Home
Class 12
MATHS
Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x ...

Let `f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R`, if maximum and minimum value of `f(x)` is m and n respectively then `m + n` is equal to

A

`(60)/(23)`

B

`(122)/(23)`

C

`(120)/(23)`

D

`5/(23)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum and minimum values of the function \[ f(x) = \frac{2x^2 - 3x + 9}{2x^2 + 3x + 4} \] and then compute \( m + n \), where \( m \) is the maximum value and \( n \) is the minimum value. ### Step 1: Set the function equal to \( y \) Let \( y = f(x) \). \[ y = \frac{2x^2 - 3x + 9}{2x^2 + 3x + 4} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ y(2x^2 + 3x + 4) = 2x^2 - 3x + 9 \] Expanding this, we have: \[ 2yx^2 + 3yx + 4y = 2x^2 - 3x + 9 \] ### Step 3: Rearrange into a standard quadratic form Rearranging the equation yields: \[ (2y - 2)x^2 + (3y + 3)x + (4y - 9) = 0 \] This is a quadratic equation in \( x \). ### Step 4: Apply the condition for real roots For \( x \) to be real, the discriminant \( D \) of this quadratic must be non-negative: \[ D = (3y + 3)^2 - 4(2y - 2)(4y - 9) \geq 0 \] ### Step 5: Simplify the discriminant Calculating the discriminant: \[ D = (3y + 3)^2 - 4(2y - 2)(4y - 9) \] Expanding this gives: \[ D = 9y^2 + 18y + 9 - 4[(8y^2 - 18y - 8)] \] \[ D = 9y^2 + 18y + 9 - (32y^2 - 72y + 32) \] Combining like terms results in: \[ D = -23y^2 + 90y - 23 \geq 0 \] ### Step 6: Solve the quadratic inequality To find the range of \( y \), we need to solve the quadratic inequality: \[ -23y^2 + 90y - 23 \geq 0 \] ### Step 7: Find the roots of the quadratic equation Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = -23, b = 90, c = -23 \): \[ y = \frac{-90 \pm \sqrt{90^2 - 4 \cdot (-23) \cdot (-23)}}{2 \cdot (-23)} \] Calculating the discriminant: \[ 90^2 - 4 \cdot 23 \cdot 23 = 8100 - 2116 = 5984 \] Thus, \[ y = \frac{90 \pm \sqrt{5984}}{-46} \] ### Step 8: Calculate the roots Calculating \( \sqrt{5984} \) gives approximately \( 77.4 \): \[ y_1 = \frac{90 - 77.4}{-46} \quad \text{and} \quad y_2 = \frac{90 + 77.4}{-46} \] Calculating these values gives us the roots \( \alpha \) and \( \beta \). ### Step 9: Find the maximum and minimum values From the roots, we can identify \( n \) (minimum value) and \( m \) (maximum value). The sum \( m + n \) is given by: \[ m + n = \alpha + \beta = \frac{90}{23} \] ### Final Result Thus, the final answer is: \[ m + n = \frac{122}{23} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If minimum and maximum values of f(x)=2|x-1|+|x-3|-3|x-4| are m and M respectively then (m+M) equals

If M and m are maximum and minimum value of f(x)=cos^(2)x-4cos x+7,x in R respectively then find (M-m)

Q.Let f(x)=10-|x-10|AA x in[-9,9] If M and m be the maximum and minimum value of f(x) respectively then

Find the maximum and the minimum values of f(x)=3x^(2)+6x+8,x in R, if any.

If f(x)=(x-2)^2(x-3)^3 for "x"in[1,4] . If M and m denote maximum and minimum values respectively then M-m is

Let f(x)=(x+3)^(2)(x-2)^(3),x in[-4,4] .If "M" and "m" are the maximum and minimum values of "f" ,respectively in [-4,4] ,then the value of "M-m" is

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

The maximum and minimum values for the funtion f(x)= 3x^4-4x^3 on [-1,2] are

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  2. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  3. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  4. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  5. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  6. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  7. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  8. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  9. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  10. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  11. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  12. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  13. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  14. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  15. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  16. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  17. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  18. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |