Home
Class 12
MATHS
If cot^(-1) 2 + cot^(-1) 3 + cot^(-1) 4 ...

If `cot^(-1) 2 + cot^(-1) 3 + cot^(-1) 4 + …….+ cot^(-1) n = pi/4`then value of n is

A

2

B

4

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that: \[ \cot^{-1}(2) + \cot^{-1}(3) + \cot^{-1}(4) + \ldots + \cot^{-1}(n) = \frac{\pi}{4} \] ### Step 1: Understanding the cotangent inverse addition formula We will use the identity for the sum of two cotangent inverses: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1}\left(\frac{xy - 1}{x + y}\right) \] This means we can combine the terms in the series using this identity. ### Step 2: Start with the first two terms Let’s first consider the sum of the first two terms, \( \cot^{-1}(2) + \cot^{-1}(3) \): Using the identity: \[ \cot^{-1}(2) + \cot^{-1}(3) = \cot^{-1}\left(\frac{2 \cdot 3 - 1}{2 + 3}\right) = \cot^{-1}\left(\frac{6 - 1}{5}\right) = \cot^{-1}\left(\frac{5}{5}\right) = \cot^{-1}(1) \] ### Step 3: Recognizing the value of cotangent inverse We know that: \[ \cot^{-1}(1) = \frac{\pi}{4} \] ### Step 4: Conclusion about \( n \) Since \( \cot^{-1}(2) + \cot^{-1}(3) = \frac{\pi}{4} \), we can conclude that the sum of the series from \( \cot^{-1}(2) \) to \( \cot^{-1}(n) \) must equal \( \frac{\pi}{4} \) when \( n = 3 \). If we include any term \( \cot^{-1}(k) \) for \( k > 3 \), the sum will exceed \( \frac{\pi}{4} \). Thus, the value of \( n \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) 7 + 2 cot^(-1)3 = pi/4

Prove that 2cot^(-1)5+ cot^(-1)7 + 2cot^(-1)8 =pi/4

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

Find- cot^(-1)1+cot^(-1)2+cot^(-1)3

cot(pi/2-2cot^(-1)sqrt3)

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If cot^(-1) 2 + cot^(-1) 3 + cot^(-1) 4 + …….+ cot^(-1) n = pi/4then v...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |