Home
Class 12
MATHS
In the binomial expansion of (x + y)^n s...

In the binomial expansion of `(x + y)^n` second, third and forth terms are respectively `135, 30` and `(10)/3` then value of `6(n^2 + x^3 + y^3)`is

A

2810

B

`(2810)/9`

C

`(1405)/9`

D

`(2810)/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 6(n^2 + x^3 + y^3) \) given the second, third, and fourth terms of the binomial expansion \( (x + y)^n \) are \( 135, 30, \) and \( \frac{10}{3} \) respectively. ### Step-by-step Solution: 1. **Identify the terms in the binomial expansion**: The \( r \)-th term in the binomial expansion of \( (x + y)^n \) is given by: \[ T_{r+1} = \binom{n}{r} x^{n-r} y^r \] Therefore, we can express the second, third, and fourth terms as follows: - Second term \( T_2 = \binom{n}{1} x^{n-1} y = 135 \) - Third term \( T_3 = \binom{n}{2} x^{n-2} y^2 = 30 \) - Fourth term \( T_4 = \binom{n}{3} x^{n-3} y^3 = \frac{10}{3} \) 2. **Set up equations based on the terms**: From the above expressions, we can set up the following equations: \[ \binom{n}{1} x^{n-1} y = 135 \quad \text{(1)} \] \[ \binom{n}{2} x^{n-2} y^2 = 30 \quad \text{(2)} \] \[ \binom{n}{3} x^{n-3} y^3 = \frac{10}{3} \quad \text{(3)} \] 3. **Express \( \binom{n}{r} \)**: Recall that: \[ \binom{n}{1} = n, \quad \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \] Substitute these into the equations: - From (1): \( n x^{n-1} y = 135 \) - From (2): \( \frac{n(n-1)}{2} x^{n-2} y^2 = 30 \) - From (3): \( \frac{n(n-1)(n-2)}{6} x^{n-3} y^3 = \frac{10}{3} \) 4. **Divide equations to eliminate variables**: Divide equation (2) by equation (1): \[ \frac{\frac{n(n-1)}{2} x^{n-2} y^2}{n x^{n-1} y} = \frac{30}{135} \] Simplifying gives: \[ \frac{(n-1) y}{2 x} = \frac{2}{9} \quad \Rightarrow \quad (n-1) y = \frac{4}{9} x \quad \text{(4)} \] Now divide equation (3) by equation (2): \[ \frac{\frac{n(n-1)(n-2)}{6} x^{n-3} y^3}{\frac{n(n-1)}{2} x^{n-2} y^2} = \frac{\frac{10}{3}}{30} \] Simplifying gives: \[ \frac{(n-2) y}{3 x} = \frac{1}{9} \quad \Rightarrow \quad (n-2) y = \frac{1}{3} x \quad \text{(5)} \] 5. **Substitute and solve for \( n \)**: From equation (4), we have: \[ y = \frac{4}{9(n-1)} x \] Substitute \( y \) into equation (5): \[ (n-2) \left(\frac{4}{9(n-1)} x\right) = \frac{1}{3} x \] Cancel \( x \) (assuming \( x \neq 0 \)): \[ \frac{4(n-2)}{9(n-1)} = \frac{1}{3} \] Cross-multiplying gives: \[ 4(n-2) = 3(n-1) \quad \Rightarrow \quad 4n - 8 = 3n - 3 \quad \Rightarrow \quad n = 5 \] 6. **Find \( x \) and \( y \)**: Substitute \( n = 5 \) back into equation (4): \[ (5-1) y = \frac{4}{9} x \quad \Rightarrow \quad 4y = \frac{4}{9} x \quad \Rightarrow \quad y = \frac{1}{9} x \] Substitute \( y \) into equation (1): \[ 5 x^{4} \left(\frac{1}{9} x\right) = 135 \quad \Rightarrow \quad \frac{5}{9} x^{5} = 135 \quad \Rightarrow \quad x^{5} = 243 \quad \Rightarrow \quad x = 3 \] Thus, \( y = \frac{1}{9} \cdot 3 = \frac{1}{3} \). 7. **Calculate \( 6(n^2 + x^3 + y^3) \)**: Now we can find: \[ n^2 = 5^2 = 25, \quad x^3 = 3^3 = 27, \quad y^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27} \] Therefore, \[ n^2 + x^3 + y^3 = 25 + 27 + \frac{1}{27} = 52 + \frac{1}{27} = \frac{1404 + 1}{27} = \frac{1405}{27} \] Finally, \[ 6(n^2 + x^3 + y^3) = 6 \cdot \frac{1405}{27} = \frac{8430}{27} = 310 \] ### Final Answer: \[ \boxed{310} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

In the expansion of (1+x)^(n) the binomial coefficients of three consecutive terms are respectively 220,49 and 792 find the value of n .

The first three terms in the Binomial expansion of (x+y)^n are 1,56 and 1372 respectively . Find the value of x and y

If 2nd, 3rd and 4th tems in the expansion of (x+y)^n be 240,720 and 1080 respectively, find x,y and n.

If the second,third and fourth in the expansion of (x+y)^(n) are 135,30 and (10)/(3) respectively,then

If the secound, third and fourth terms in the expansion of (x + y )^(n) are 135 , 30 and 10/3 respectively , then

If in the expansion of (1 +x)^(m) (1 - x)^(n) , the coefficients of x and x^(2) are 3 and - 6 respectively, the value of m and n are

The binomial expansion of (x^(k)+(1)/(x^(2k)))^(3n), n in N contains a term independent of x

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. In the binomial expansion of (x + y)^n second, third and forth terms a...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |