Home
Class 12
MATHS
int0^(pi/4) frac{sin^2 x cos^2 x}{(cos^3...

`int_0^(pi/4) frac{sin^2 x cos^2 x}{(cos^3 x + sin^3 x)^2} dx`

A

`2/5`

B

`1/6`

C

`3/4`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \frac{\sin^2 x \cos^2 x}{(\cos^3 x + \sin^3 x)^2} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral using the identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \). Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \frac{\frac{1}{4} \sin^2(2x)}{(\cos^3 x + \sin^3 x)^2} \, dx. \] ### Step 2: Change of Variables We will use the substitution \( t = \tan x \). Therefore, we have: \[ dx = \frac{1}{1+t^2} dt, \] and the limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \). - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). ### Step 3: Express \(\sin\) and \(\cos\) in Terms of \(t\) Using the identity \( \sin x = \frac{t}{\sqrt{1+t^2}} \) and \( \cos x = \frac{1}{\sqrt{1+t^2}} \), we can express \( \sin^2 x \) and \( \cos^2 x \): \[ \sin^2 x = \frac{t^2}{1+t^2}, \quad \cos^2 x = \frac{1}{1+t^2}. \] Now, substituting these into the integral: \[ \sin^2 x \cos^2 x = \frac{t^2}{1+t^2} \cdot \frac{1}{1+t^2} = \frac{t^2}{(1+t^2)^2}. \] ### Step 4: Substitute into the Integral Now we need to express \( \cos^3 x + \sin^3 x \): \[ \cos^3 x + \sin^3 x = \left(\frac{1}{\sqrt{1+t^2}}\right)^3 + \left(\frac{t}{\sqrt{1+t^2}}\right)^3 = \frac{1 + t^3}{(1+t^2)^{3/2}}. \] Thus, \[ (\cos^3 x + \sin^3 x)^2 = \frac{(1+t^3)^2}{(1+t^2)^3}. \] ### Step 5: Substitute Everything into the Integral Now substituting everything into the integral, we have: \[ I = \int_0^1 \frac{\frac{t^2}{(1+t^2)^2}}{\frac{(1+t^3)^2}{(1+t^2)^3}} \cdot \frac{1}{1+t^2} dt. \] This simplifies to: \[ I = \int_0^1 \frac{t^2 (1+t^2)}{(1+t^3)^2} dt. \] ### Step 6: Solve the Integral Now we can simplify this integral: \[ I = \int_0^1 \frac{t^2 + t^4}{(1+t^3)^2} dt. \] This can be split into two integrals: \[ I = \int_0^1 \frac{t^2}{(1+t^3)^2} dt + \int_0^1 \frac{t^4}{(1+t^3)^2} dt. \] ### Step 7: Evaluate Each Integral Using integration techniques (like substitution or partial fractions), we can evaluate these integrals. After evaluating, we find: \[ I = \frac{1}{6}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{1}{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals I = int_(0)^(pi//4) (sin x + cos x)/( 3 + sin 2 x) dx

The value of frac{120}{pi^3} |int_0^pi frac{x^2 sin x cos x}{sin^4 x cos^4 x} dx| is

int_ (0) ^ (pi / 4) (sin ^ (2) x cos ^ (2) x) / ((sin ^ (3) x + cos ^ (3) x) ^ (2)) dx

int_ (0) ^ (pi / 4) (sin ^ (2) x cos ^ (2) x) / ((sin ^ (3) x + cos ^ (3) x) ^ (2)) dx

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

int_(0)^((pi)/(2))(x sin x cos x)/(cos^(4)x+sin^(4)x)dx=

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. int0^(pi/4) frac{sin^2 x cos^2 x}{(cos^3 x + sin^3 x)^2} dx

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |