Home
Class 12
MATHS
For differential equation (1 + x^2) (dy)...

For differential equation `(1 + x^2) (dy)/(dx) + y = e^(tan^(-1)x`. Let y(x) is solution if y(0) =2 then value of y(1) is

A

`frac{e^(pi/4)}{2} + frac{3}{2e^(pi/4)}`

B

`frac{e^(pi/4)}{2} + frac{3}{2e^(-pi/4)}`

C

`frac{e^(pi/4)}{2} - frac{3}{2e^(pi/4)}`

D

`frac{e^(pi/4)}{2} - frac{3}{2e^(-pi/4)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ (1 + x^2) \frac{dy}{dx} + y = e^{\tan^{-1}(x)} \] with the initial condition \( y(0) = 2 \), we will follow these steps: ### Step 1: Rewrite the Differential Equation First, we rewrite the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} + \frac{y}{1 + x^2} = \frac{e^{\tan^{-1}(x)}}{1 + x^2} \] ### Step 2: Identify the Integrating Factor The standard form of a linear first-order differential equation is \[ \frac{dy}{dx} + P(x)y = Q(x) \] where \( P(x) = \frac{1}{1 + x^2} \) and \( Q(x) = \frac{e^{\tan^{-1}(x)}}{1 + x^2} \). To find the integrating factor \( \mu(x) \), we compute: \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int \frac{1}{1 + x^2} \, dx} = e^{\tan^{-1}(x)} \] ### Step 3: Multiply the Equation by the Integrating Factor Now, we multiply the entire differential equation by the integrating factor: \[ e^{\tan^{-1}(x)} \frac{dy}{dx} + e^{\tan^{-1}(x)} \frac{y}{1 + x^2} = e^{\tan^{-1}(x)} \frac{e^{\tan^{-1}(x)}}{1 + x^2} \] This simplifies to: \[ \frac{d}{dx}\left( y e^{\tan^{-1}(x)} \right) = \frac{e^{2 \tan^{-1}(x)}}{1 + x^2} \] ### Step 4: Integrate Both Sides Next, we integrate both sides with respect to \( x \): \[ \int \frac{d}{dx}\left( y e^{\tan^{-1}(x)} \right) \, dx = \int \frac{e^{2 \tan^{-1}(x)}}{1 + x^2} \, dx \] The left side simplifies to: \[ y e^{\tan^{-1}(x)} = \int \frac{e^{2 \tan^{-1}(x)}}{1 + x^2} \, dx + C \] ### Step 5: Solve the Integral To solve the integral on the right side, we can use the substitution \( t = \tan^{-1}(x) \), which gives \( x = \tan(t) \) and \( dx = \sec^2(t) dt \). This results in: \[ \int e^{2t} dt = \frac{e^{2t}}{2} + C \] Substituting back, we have: \[ y e^{\tan^{-1}(x)} = \frac{e^{2 \tan^{-1}(x)}}{2} + C \] ### Step 6: Solve for \( y \) Now, we can solve for \( y \): \[ y = \frac{e^{\tan^{-1}(x)}}{2} + C e^{-\tan^{-1}(x)} \] ### Step 7: Apply Initial Condition Using the initial condition \( y(0) = 2 \): \[ 2 = \frac{e^{\tan^{-1}(0)}}{2} + C e^{-\tan^{-1}(0)} \] Since \( \tan^{-1}(0) = 0 \), we have: \[ 2 = \frac{1}{2} + C \implies C = \frac{3}{2} \] ### Step 8: Final Solution Thus, the particular solution is: \[ y = \frac{e^{\tan^{-1}(x)}}{2} + \frac{3}{2} e^{-\tan^{-1}(x)} \] ### Step 9: Find \( y(1) \) Now, we calculate \( y(1) \): \[ y(1) = \frac{e^{\tan^{-1}(1)}}{2} + \frac{3}{2} e^{-\tan^{-1}(1)} \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ y(1) = \frac{e^{\frac{\pi}{4}}}{2} + \frac{3}{2} e^{-\frac{\pi}{4}} \] ### Final Answer Thus, the value of \( y(1) \) is: \[ y(1) = \frac{e^{\frac{\pi}{4}}}{2} + \frac{3}{2} e^{-\frac{\pi}{4}} \] ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

The solution of the differential equation (1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x) is :

If y = y (x) is the solution of the differential equation (5 + e^(x))/(2 + y) * (dy)/(dx) + e^(x) = 0 satisfying y(0) = 1 , then a value of y (log _(e) 13) is :

The solution of the differential equation (1+y^(2)) dx = (tan^(-1) y - x) dy is

Solution of the differential equation (x-y)(1-(dy)/(dx))=e^(x) is

The solution of differential equation (1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0 , is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. For differential equation (1 + x^2) (dy)/(dx) + y = e^(tan^(-1)x. Let ...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |