Home
Class 12
MATHS
Let f(x) = {(x^3, sin(1/x),, x, ne, 0),(...

Let `f(x) = {(x^3, sin(1/x),, x, ne, 0),(0, " ",, x, =, 0):}`
Then which of the following is true

A

`f`"`(2/pi) = (12-pi^2)/(2pi)`

B

`f`"`(2/pi) = (24-pi^2)/(2pi)`

C

`f`"`(0) = 0`

D

`f`"`(0) = pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We need to determine the second derivative of this function and evaluate it at specific points to see which statements are true. ### Step 1: Find the first derivative \( f'(x) \) For \( x \neq 0 \), we use the product rule to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(x^3\right) \sin\left(\frac{1}{x}\right) + x^3 \frac{d}{dx}\left(\sin\left(\frac{1}{x}\right)\right) \] Calculating the derivatives: 1. \( \frac{d}{dx}(x^3) = 3x^2 \) 2. \( \frac{d}{dx}\left(\sin\left(\frac{1}{x}\right)\right) = \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = -\frac{\cos\left(\frac{1}{x}\right)}{x^2} \) Putting it all together: \[ f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) + x^3 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) \] Simplifying: \[ f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \] ### Step 2: Find the second derivative \( f''(x) \) Now we differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx}\left(3x^2 \sin\left(\frac{1}{x}\right)\right) - \frac{d}{dx}\left(x \cos\left(\frac{1}{x}\right)\right) \] Calculating each part: 1. For \( 3x^2 \sin\left(\frac{1}{x}\right) \): - Using the product rule: \[ \frac{d}{dx}(3x^2) \sin\left(\frac{1}{x}\right) + 3x^2 \frac{d}{dx}\left(\sin\left(\frac{1}{x}\right)\right) \] - This gives: \[ 6x \sin\left(\frac{1}{x}\right) + 3x^2 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) = 6x \sin\left(\frac{1}{x}\right) - 3\cos\left(\frac{1}{x}\right) \] 2. For \( x \cos\left(\frac{1}{x}\right) \): - Again using the product rule: \[ \frac{d}{dx}(x) \cos\left(\frac{1}{x}\right) + x \frac{d}{dx}\left(\cos\left(\frac{1}{x}\right)\right) \] - This gives: \[ \cos\left(\frac{1}{x}\right) + x\left(-\sin\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right)\right) = \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} \] Putting it all together for \( f''(x) \): \[ f''(x) = \left(6x \sin\left(\frac{1}{x}\right) - 3\cos\left(\frac{1}{x}\right)\right) - \left(\cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x}\right) \] Simplifying: \[ f''(x) = 6x \sin\left(\frac{1}{x}\right) - 4\cos\left(\frac{1}{x}\right) - \frac{\sin\left(\frac{1}{x}\right)}{x} \] ### Step 3: Evaluate \( f''(0) \) To find \( f''(0) \), we need to consider the limit as \( x \to 0 \): \[ f''(0) = \lim_{x \to 0} \left(6x \sin\left(\frac{1}{x}\right) - 4\cos\left(\frac{1}{x}\right) - \frac{\sin\left(\frac{1}{x}\right)}{x}\right) \] As \( x \to 0 \), \( \sin\left(\frac{1}{x}\right) \) oscillates between -1 and 1, and \( \cos\left(\frac{1}{x}\right) \) also oscillates. Thus, \( f''(0) \) is not defined. ### Conclusion Based on the analysis, we can conclude the following: 1. \( f''(0) \) is not defined. 2. The value of \( f''(x) \) as \( x \to 2/\pi \) can be calculated, but the specific value is not straightforward without further computation.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {(x "sin "(1)/(x)","," if " x != 0),(" 0,"," where " x = 0):} Then, which of the following is the true statement ?

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let f(x) = {(x^3, sin(1/x),, x, ne, 0),(0, " ",, x, =, 0):} Then whi...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |