Home
Class 12
MATHS
Let ar = |[r, 1, (n^2)/2 + alpha], [2r, ...

Let `a_r = |[r, 1, (n^2)/2 + alpha], [2r, 2, n^2 - beta], [3r - 2, 3, n(n-1)]|`, then value of `2a_(10)-a_8` is

A

0

B

`4 alpha + 2 beta`

C

`8 alpha + 4 beta`

D

`2 alpha + beta n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2a_{10} - a_{8} \) where \( a_r \) is defined as the determinant of the following matrix: \[ a_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & n^2 - \beta \\ 3r - 2 & 3 & n(n-1) \end{vmatrix} \] ### Step 1: Simplify the Determinant First, we can factor out constants from the rows of the determinant. Notice that we can take out a factor of 2 from the second row: \[ = 2 \cdot \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ r & 1 & \frac{n^2 - \beta}{2} \\ 3r - 2 & 3 & n(n-1) \end{vmatrix} \] ### Step 2: Perform Row Operations Next, we perform row operations to simplify the determinant further. We can subtract the second row from the first row: \[ = 2 \cdot \begin{vmatrix} 0 & 0 & \frac{n^2}{2} + \alpha - \frac{n^2 - \beta}{2} \\ 2r & 2 & n^2 - \beta \\ 3r - 2 & 3 & n(n-1) \end{vmatrix} \] This simplifies to: \[ = 2 \cdot \begin{vmatrix} 0 & 0 & \frac{\beta + \alpha}{2} \\ 2r & 2 & n^2 - \beta \\ 3r - 2 & 3 & n(n-1) \end{vmatrix} \] ### Step 3: Calculate the Determinant Since the first row has two zeros, we can expand the determinant: \[ = 2 \cdot \left(\frac{\beta + \alpha}{2}\right) \cdot \begin{vmatrix} 2r & 2 \\ 3r - 2 & 3 \end{vmatrix} \] Calculating the \( 2 \times 2 \) determinant: \[ = 2 \cdot \left(\frac{\beta + \alpha}{2}\right) \cdot (2 \cdot 3 - 2 \cdot (3r - 2)) \] This simplifies to: \[ = 2 \cdot \left(\frac{\beta + \alpha}{2}\right) \cdot (6 - 6r + 4) = 2 \cdot \left(\frac{\beta + \alpha}{2}\right) \cdot (10 - 6r) \] ### Step 4: Final Expression for \( a_r \) Thus, we have: \[ a_r = \beta + \alpha \cdot (10 - 6r) \] ### Step 5: Calculate \( a_{10} \) and \( a_{8} \) Now, we can find \( a_{10} \) and \( a_{8} \): \[ a_{10} = \beta + \alpha \cdot (10 - 60) = \beta + \alpha \cdot (-50) \] \[ a_{8} = \beta + \alpha \cdot (10 - 48) = \beta + \alpha \cdot (-38) \] ### Step 6: Calculate \( 2a_{10} - a_{8} \) Now we can compute \( 2a_{10} - a_{8} \): \[ 2a_{10} = 2(\beta - 50\alpha) = 2\beta - 100\alpha \] \[ 2a_{10} - a_{8} = (2\beta - 100\alpha) - (\beta - 38\alpha) = 2\beta - 100\alpha - \beta + 38\alpha \] \[ = \beta - 62\alpha \] ### Final Answer Thus, the value of \( 2a_{10} - a_{8} \) is: \[ \boxed{4\alpha + 2\beta} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If A_r=|[1,r,2^r],[2,n,n^2],[n,(n(n+1))/2, 2^(n+1)]|, the value of sum_(r=1)^n A_r is (A) n (B) 2n (C) -2n (D) n^2

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n_1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If Delta_r=|(r,2r-1,3r+2),(n/2,n-1,a),(1/2n(n-1),(n-1)^2,1/2(n-1)(3n+4))| then the value of sum_(r=1)^(n-1) Delta_r (1) depends only on n (2) is independent of both a and n (3) depends only on a (4) depends both on a and n

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let ar = |[r, 1, (n^2)/2 + alpha], [2r, 2, n^2 - beta], [3r - 2, 3, n(...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |