Home
Class 12
MATHS
Shortest distance between lines (x -3)/2...

Shortest distance between lines `(x -3)/2 = (y-15)/(-7) = (z – 9)/5` and `(x + 1)/2 = (y – 1)/1 = (z – 9)/(-3)` is equal to

A

`24 sqrt 3`

B

`12 sqrt 3`

C

`6 sqrt 3`

D

`sqrt 3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Write the equations of the lines in vector form The first line is given by: \[ \frac{x - 3}{2} = \frac{y - 15}{-7} = \frac{z - 9}{5} \] This can be represented in vector form as: \[ \mathbf{r_1} = \begin{pmatrix} 3 \\ 15 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -7 \\ 5 \end{pmatrix} \] where \( \mathbf{a_1} = \begin{pmatrix} 3 \\ 15 \\ 9 \end{pmatrix} \) and \( \mathbf{b_1} = \begin{pmatrix} 2 \\ -7 \\ 5 \end{pmatrix} \). The second line is given by: \[ \frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z - 9}{-3} \] This can be represented in vector form as: \[ \mathbf{r_2} = \begin{pmatrix} -1 \\ 1 \\ 9 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \] where \( \mathbf{a_2} = \begin{pmatrix} -1 \\ 1 \\ 9 \end{pmatrix} \) and \( \mathbf{b_2} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \). ### Step 2: Calculate \( \mathbf{a_1} - \mathbf{a_2} \) Now, we compute \( \mathbf{a_1} - \mathbf{a_2} \): \[ \mathbf{a_1} - \mathbf{a_2} = \begin{pmatrix} 3 \\ 15 \\ 9 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 9 \end{pmatrix} = \begin{pmatrix} 3 - (-1) \\ 15 - 1 \\ 9 - 9 \end{pmatrix} = \begin{pmatrix} 4 \\ 14 \\ 0 \end{pmatrix} \] ### Step 3: Compute the cross product \( \mathbf{b_1} \times \mathbf{b_2} \) Next, we calculate the cross product \( \mathbf{b_1} \times \mathbf{b_2} \): \[ \mathbf{b_1} = \begin{pmatrix} 2 \\ -7 \\ 5 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \] Using the determinant method: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i}((-7)(-3) - (5)(1)) - \mathbf{j}((2)(-3) - (5)(2)) + \mathbf{k}((2)(1) - (-7)(2)) \] \[ = \mathbf{i}(21 - 5) - \mathbf{j}(-6 - 10) + \mathbf{k}(2 + 14) \] \[ = \mathbf{i}(16) + \mathbf{j}(16) + \mathbf{k}(16) = \begin{pmatrix} 16 \\ 16 \\ 16 \end{pmatrix} \] ### Step 4: Calculate the magnitude of \( \mathbf{b_1} \times \mathbf{b_2} \) The magnitude of the cross product is: \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{16^2 + 16^2 + 16^2} = \sqrt{768} = 16\sqrt{3} \] ### Step 5: Calculate the shortest distance \( D \) Using the formula for the shortest distance \( D \): \[ D = \frac{|\mathbf{a_1} - \mathbf{a_2} \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] First, compute the dot product: \[ \mathbf{a_1} - \mathbf{a_2} \cdot (\mathbf{b_1} \times \mathbf{b_2}) = \begin{pmatrix} 4 \\ 14 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 16 \\ 16 \\ 16 \end{pmatrix} = 4 \cdot 16 + 14 \cdot 16 + 0 \cdot 16 = 64 + 224 + 0 = 288 \] Thus, the distance \( D \) becomes: \[ D = \frac{|288|}{16\sqrt{3}} = \frac{288}{16\sqrt{3}} = \frac{18}{\sqrt{3}} = 6\sqrt{3} \] ### Final Answer The shortest distance between the two lines is: \[ \boxed{6\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) is :

If 1,m ,n are the direction cosines of the line of shortest distance between the lines (x-3)/(2) = (y+15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) then :

Shortest distance between the lines (x-3)/1 = (y-8)/4 = (z-3)/22 and (x+3)/1 = (y+7)/1 = (z-6)/7 is

The shortest distance between the lines (x-5)/4 = (y-7)/-5 = (z+3)/-5 and (x-8)/7 = (y-7)/1 = (z-5)/3 is

Find the shortest distance between the lines (x-23)/(-6) = (y-19)/(-4) = (z-25)/(3) and (x-12)/(-9) = (y-1)/(4)= (z-5)/(2).

Find the distance between the parallel lines (x)/(2) =(y)/(-1) =(z)/(2) and (x-1)/(2) = (y-1)/(-1) = (z-3)/(2) .

Find the shortest distance between the lines (x-1)/2=(y-2)/4=(z-3)/7 and (x-1)/4=(y-2)/5=(z-3)/7

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Shortest distance between lines (x -3)/2 = (y-15)/(-7) = (z – 9)/5 and...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |