Home
Class 12
MATHS
Let y(x) be the solution of differential...

Let y(x) be the solution of differential equation `(1 + y^2) e^(tan x) dx + cos^2x(1 + e^(2 tan x)) dy = 0` and `y(0) = 1` then `y(pi/4)` is

A

e

B

2e

C

`1/e`

D

`1/(2e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ (1 + y^2) e^{\tan x} \, dx + \cos^2 x (1 + e^{2 \tan x}) \, dy = 0 \] with the initial condition \( y(0) = 1 \), we can follow these steps: ### Step 1: Rearranging the Equation We can rearrange the equation to separate the variables \( y \) and \( x \): \[ (1 + y^2) e^{\tan x} \, dx = -\cos^2 x (1 + e^{2 \tan x}) \, dy \] Dividing both sides by \( \cos^2 x (1 + e^{2 \tan x}) \): \[ \frac{dy}{1 + y^2} = -\frac{e^{\tan x}}{\cos^2 x (1 + e^{2 \tan x})} \, dx \] ### Step 2: Integrating Both Sides Now we integrate both sides. The left side integrates to: \[ \int \frac{dy}{1 + y^2} = \tan^{-1}(y) + C_1 \] For the right side, we need to simplify and integrate: \[ \int -\frac{e^{\tan x}}{\cos^2 x (1 + e^{2 \tan x})} \, dx \] Let \( t = e^{\tan x} \), then \( dt = e^{\tan x} \sec^2 x \, dx \). Thus, we can rewrite \( dx \): \[ dx = \frac{dt}{t \sec^2 x} \] Substituting this back into the integral gives: \[ \int -\frac{t}{1 + t^2} \cdot \frac{dt}{t \sec^2 x} = -\int \frac{1}{1 + t^2} \, dt = -\tan^{-1}(t) + C_2 \] ### Step 3: Combining Integrals Combining the results from both integrals gives us: \[ \tan^{-1}(y) = -\tan^{-1}(e^{\tan x}) + C \] ### Step 4: Applying Initial Condition We apply the initial condition \( y(0) = 1 \): \[ \tan^{-1}(1) = -\tan^{-1}(e^{\tan(0)}) + C \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( \tan(0) = 0 \) implies \( e^{\tan(0)} = 1 \): \[ \frac{\pi}{4} = -\tan^{-1}(1) + C \implies \frac{\pi}{4} = -\frac{\pi}{4} + C \implies C = \frac{\pi}{2} \] ### Step 5: Final Solution Thus, the particular solution is: \[ \tan^{-1}(y) = -\tan^{-1}(e^{\tan x}) + \frac{\pi}{2} \] ### Step 6: Finding \( y(\frac{\pi}{4}) \) Now we need to find \( y\left(\frac{\pi}{4}\right) \): \[ \tan^{-1}(y) = -\tan^{-1}(e^{\tan(\frac{\pi}{4})}) + \frac{\pi}{2} \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ \tan^{-1}(y) = -\tan^{-1}(e) + \frac{\pi}{2} \] Using the identity \( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \): \[ \tan^{-1}(y) = \tan^{-1}\left(\frac{1}{e}\right) \] Thus, we find: \[ y = \frac{1}{e} \] ### Final Answer Therefore, the value of \( y\left(\frac{\pi}{4}\right) \) is: \[ \boxed{\frac{1}{e}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1+y^(2)) tan^(-1) x dx + y(1+x^(2)) dy = 0 is

The solution of the differential equation (1+y^2)tan^(-1) x dx +(1+x^2)2ydy=0 is

What is the solution of the differential equation 3e^(x) tan y dx + (1 + e^(x)) sec^(2) y dy = 0 ?

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

The solution of differential equation (1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0 , is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

Solve the differential equation : sec^(2)x tan y dx + sec^(2) y tan x dy = 0

Solve the following differential equation. (1) e^(x) tan^(2)y dx + (e^(x) -1) sec^(2) y dy = 0

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let y(x) be the solution of differential equation (1 + y^2) e^(tan x) ...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |