Home
Class 12
MATHS
If matrix A = [[2, a, 0], [1, 3, 1], [0,...

If matrix `A = [[2, a, 0], [1, 3, 1], [0, 5, b]]`and `A^3 = 4A^2 – A – 21I`, then the value of `2a + 3b` is

A

0

B

`-5`

C

`-13`

D

`-7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) from the given matrix equation \( A^3 = 4A^2 - A - 21I \) where \( A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix} \). ### Step 1: Find the characteristic polynomial of matrix \( A \) The characteristic polynomial is given by \( \text{det}(A - \lambda I) = 0 \). We calculate \( A - \lambda I \): \[ A - \lambda I = \begin{bmatrix} 2 - \lambda & a & 0 \\ 1 & 3 - \lambda & 1 \\ 0 & 5 & b - \lambda \end{bmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula for a \( 3 \times 3 \) matrix, we have: \[ \text{det}(A - \lambda I) = (2 - \lambda) \cdot \text{det}\begin{bmatrix} 3 - \lambda & 1 \\ 5 & b - \lambda \end{bmatrix} - a \cdot \text{det}\begin{bmatrix} 1 & 1 \\ 0 & b - \lambda \end{bmatrix} \] Calculating the determinants: 1. \( \text{det}\begin{bmatrix} 3 - \lambda & 1 \\ 5 & b - \lambda \end{bmatrix} = (3 - \lambda)(b - \lambda) - 5 \) 2. \( \text{det}\begin{bmatrix} 1 & 1 \\ 0 & b - \lambda \end{bmatrix} = (b - \lambda) \) Thus, we can write: \[ \text{det}(A - \lambda I) = (2 - \lambda)((3 - \lambda)(b - \lambda) - 5) - a(b - \lambda) \] ### Step 3: Expand the determinant Expanding the determinant gives us: \[ = (2 - \lambda)((3b - 3\lambda - 5 + \lambda^2) - a(b - \lambda) \] This will yield a polynomial in \( \lambda \). ### Step 4: Compare coefficients with the characteristic equation Since we know that \( A^3 = 4A^2 - A - 21I \), we can derive the coefficients from this equation. The characteristic polynomial must satisfy this equation. ### Step 5: Solve for \( a \) and \( b \) From the comparison of coefficients, we can derive: 1. \( b + 5 = 4 \) leading to \( b = -1 \) 2. \( -a + 1 = 0 \) leading to \( a = -5 \) ### Step 6: Calculate \( 2a + 3b \) Now, substituting the values of \( a \) and \( b \): \[ 2a + 3b = 2(-5) + 3(-1) = -10 - 3 = -13 \] ### Final Answer Thus, the value of \( 2a + 3b \) is \( \boxed{-13} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,5],[3,4,6]] and B=[[4,0],[2,1]] then find the value of AB.

If the matrix A = [[0,a,-3],[2,0,-1],[b,1,0]] is skew symmetric, find the value of 'a' and 'b'.

If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1,0],[0,1]] then the sum of the elements in A is

If B = [{:(-2, 2, 0),(3,1,4):}]; C= [{:(2,0,-2),(7,1,6):}]and 2 A - 3 B + 5 C = 0, then the matrix A is :

If A=[[2,3],[0,1]] and B=[[3,4],[2,1]] ,then (AB)=

If A=[[-2,1],[5,0],[-1,4]],B=[[-2,3,1],[4,0,2]] then find 2A+B^T

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

Rank of the matrix [[3,0,2], [-1,1,0],[5,2,3]] is (1) 1 (2) 2 (3) 3 (4) 4

if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If matrix A = [[2, a, 0], [1, 3, 1], [0, 5, b]]and A^3 = 4A^2 – A – 21...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |