Home
Class 12
MATHS
f(x) =4 cos^3 x + 3 sqrt 3 cos^2 x – 1 t...

`f(x) =4 cos^3 x + 3 sqrt 3 cos^2 x – 1` then, find number of the local maxima in internal `[0, 2 pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of local maxima of the function \( f(x) = 4 \cos^3 x + 3 \sqrt{3} \cos^2 x - 1 \) in the interval \( [0, 2\pi] \), we will follow these steps: ### Step 1: Differentiate the Function We need to find the first derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx}(4 \cos^3 x + 3 \sqrt{3} \cos^2 x - 1) \] Using the chain rule and product rule, we differentiate each term: - The derivative of \( 4 \cos^3 x \) is \( 12 \cos^2 x (-\sin x) = -12 \cos^2 x \sin x \). - The derivative of \( 3 \sqrt{3} \cos^2 x \) is \( 6 \sqrt{3} \cos x (-\sin x) = -6 \sqrt{3} \cos x \sin x \). - The derivative of the constant \( -1 \) is \( 0 \). Thus, we have: \[ f'(x) = -12 \cos^2 x \sin x - 6 \sqrt{3} \cos x \sin x \] Factoring out \( -6 \sin x \cos x \): \[ f'(x) = -6 \sin x \cos x (2 \cos x + \sqrt{3}) \] ### Step 2: Set the Derivative to Zero To find the critical points, we set \( f'(x) = 0 \): \[ -6 \sin x \cos x (2 \cos x + \sqrt{3}) = 0 \] This gives us three cases to consider: 1. \( \sin x = 0 \) 2. \( \cos x = 0 \) 3. \( 2 \cos x + \sqrt{3} = 0 \) ### Step 3: Solve Each Case 1. **Case 1: \( \sin x = 0 \)** - \( x = 0, \pi, 2\pi \) 2. **Case 2: \( \cos x = 0 \)** - \( x = \frac{\pi}{2}, \frac{3\pi}{2} \) 3. **Case 3: \( 2 \cos x + \sqrt{3} = 0 \)** - \( \cos x = -\frac{\sqrt{3}}{2} \) - This occurs at: - \( x = \frac{5\pi}{6} \) (2nd quadrant) - \( x = \frac{7\pi}{6} \) (3rd quadrant) ### Step 4: List All Critical Points The critical points in the interval \( [0, 2\pi] \) are: - \( x = 0 \) - \( x = \pi \) - \( x = 2\pi \) - \( x = \frac{\pi}{2} \) - \( x = \frac{3\pi}{2} \) - \( x = \frac{5\pi}{6} \) - \( x = \frac{7\pi}{6} \) ### Step 5: Determine Local Maxima To determine where the local maxima occur, we analyze the sign of \( f'(x) \) around the critical points: - **Intervals to check**: - \( (0, \frac{\pi}{2}) \) - \( (\frac{\pi}{2}, \frac{5\pi}{6}) \) - \( (\frac{5\pi}{6}, \pi) \) - \( (\pi, \frac{7\pi}{6}) \) - \( (\frac{7\pi}{6}, \frac{3\pi}{2}) \) - \( (\frac{3\pi}{2}, 2\pi) \) By testing points in these intervals, we find: - \( f'(x) \) changes from positive to negative at \( x = \frac{5\pi}{6} \) (local maximum). - \( f'(x) \) changes from positive to negative at \( x = \frac{7\pi}{6} \) (local maximum). ### Conclusion The local maxima occur at \( x = \frac{5\pi}{6} \) and \( x = \frac{7\pi}{6} \). Therefore, the number of local maxima in the interval \( [0, 2\pi] \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If sqrt(3) ( cos^2 x) = ( sqrt(3)-1) cos x +1, the numbers of solution of the given equation when x in [0,pi/2] is

Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi) .number of local maximum/maxima of the function f(x) is

(i)Find the interval in which the function f(x) = sin(Inx)-cos(Inx) is strictly increasing. (ii) For what values of 'a' the point of local minima of f(x) = x^(3) - 3ax^(2) + 3(a^(2) - 1)x+1 is less than 4 and point of local maxima is greater than -2.

Find the number of solution of sin x cos x-3cos x+4sin x-13>0 in [0,2 pi].

f (x) = cos ((pi) / (sqrt (3)) sin x + sqrt ((2) / (3)) pi cos x)

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3). What is the number of points of local minima of the function f(x)? What is the number of points of local maxima of the function f(x)?

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local maxima of the function f(x)?

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. f(x) =4 cos^3 x + 3 sqrt 3 cos^2 x – 1 then, find number of the local ...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |