Home
Class 12
MATHS
If the angle between the vector vec a = ...

If the angle between the vector `vec a = alpha t hat i + 6 hat j – 3 hat k` and `vec b = t hat i – 2 hat j – 2 alpha t hat k` is obtuse for `t in R` then `alpha` is

A

`(0, 4/3)`

B

`(-4/3, 0]`

C

`(-2, 0)`

D

`(- 3/5, 4/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \alpha \) for which the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is obtuse. The vectors are given as: \[ \vec{a} = \alpha \hat{i} + 6 \hat{j} - 3 \hat{k} \] \[ \vec{b} = \hat{i} - 2 \hat{j} - 2\alpha \hat{k} \] ### Step 1: Understand the condition for obtuse angle The angle \( \theta \) between two vectors is obtuse if the dot product \( \vec{a} \cdot \vec{b} < 0 \). ### Step 2: Calculate the dot product The dot product \( \vec{a} \cdot \vec{b} \) is calculated as follows: \[ \vec{a} \cdot \vec{b} = (\alpha \hat{i} + 6 \hat{j} - 3 \hat{k}) \cdot (\hat{i} - 2 \hat{j} - 2\alpha \hat{k}) \] Calculating this gives: \[ \vec{a} \cdot \vec{b} = \alpha \cdot 1 + 6 \cdot (-2) + (-3) \cdot (-2\alpha) \] Simplifying this: \[ = \alpha - 12 + 6\alpha = 7\alpha - 12 \] ### Step 3: Set up the inequality For the angle to be obtuse, we need: \[ 7\alpha - 12 < 0 \] ### Step 4: Solve the inequality Rearranging the inequality: \[ 7\alpha < 12 \] \[ \alpha < \frac{12}{7} \] ### Step 5: Consider the discriminant condition The dot product leads us to a quadratic equation in terms of \( t \): \[ \alpha t^2 + 6\alpha t - 12 < 0 \] For this quadratic to be negative for all \( t \), its discriminant must be less than zero. The discriminant \( D \) is given by: \[ D = b^2 - 4ac = (6\alpha)^2 - 4(\alpha)(-12) \] \[ = 36\alpha^2 + 48\alpha \] Setting the discriminant less than zero: \[ 36\alpha^2 + 48\alpha < 0 \] ### Step 6: Factor out common terms Factoring out \( 12\alpha \): \[ 12\alpha(3\alpha + 4) < 0 \] ### Step 7: Analyze the factors The inequality \( 12\alpha(3\alpha + 4) < 0 \) holds when: 1. \( \alpha < 0 \) and \( 3\alpha + 4 > 0 \) (which gives \( \alpha > -\frac{4}{3} \)) 2. \( \alpha > 0 \) and \( 3\alpha + 4 < 0 \) (which is not possible since \( \alpha > 0 \) contradicts \( 3\alpha + 4 < 0 \)) Thus, the valid range for \( \alpha \) is: \[ -\frac{4}{3} < \alpha < 0 \] ### Step 8: Combine inequalities From the previous steps, we have: 1. \( \alpha < \frac{12}{7} \) 2. \( -\frac{4}{3} < \alpha < 0 \) The final range for \( \alpha \) is: \[ -\frac{4}{3} < \alpha < 0 \] ### Final Answer Thus, the values of \( \alpha \) for which the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is obtuse are: \[ \alpha \in \left(-\frac{4}{3}, 0\right) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

Find the angle between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat j-hat k

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k

Find the angle between the vectors vec a and vec b where: vec a=2hat i-hat j+2hat k and vec b=4hat i+4hat j-2hat k

Find the angle between the vectors vec a and vec b where: vec a=hat i+2hat j-hat k,vec b=hat i-hat j+hat k

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If the angle between the vector vec a = alpha t hat i + 6 hat j – 3 ha...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |