Home
Class 12
MATHS
If the shortest distance between two ske...

If the shortest distance between two skew lines `vec r_1 = (5 + mu) hat i + (1 – 3 mu) hat j + (1 – 2 mu) hat k`, `vec r_2 = (2 + lambda) hat i + (3 – 3 lambda) hat j + (3 + 4 lambda) hat k , lambda, mu in R` is `m/sqrt n`, m is prime, `n in N`, then `n – m` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the shortest distance between the two skew lines given by the equations: \[ \vec{r_1} = (5 + \mu) \hat{i} + (1 - 3\mu) \hat{j} + (1 - 2\mu) \hat{k} \] \[ \vec{r_2} = (2 + \lambda) \hat{i} + (3 - 3\lambda) \hat{j} + (3 + 4\lambda) \hat{k} \] we will follow these steps: ### Step 1: Identify Points and Direction Vectors From the equations of the lines, we can extract the points and direction vectors. For line 1, we have: - Point \( A_1 = (5, 1, 1) \) - Direction vector \( \vec{b_1} = (1, -3, -2) \) For line 2, we have: - Point \( A_2 = (2, 3, 3) \) - Direction vector \( \vec{b_2} = (1, -3, 4) \) ### Step 2: Calculate the Vector \( A_2 - A_1 \) We calculate the vector from point \( A_1 \) to point \( A_2 \): \[ \vec{A_2 - A_1} = A_2 - A_1 = (2 - 5, 3 - 1, 3 - 1) = (-3, 2, 2) \] ### Step 3: Compute the Cross Product \( \vec{b_1} \times \vec{b_2} \) Next, we find the cross product of the direction vectors \( \vec{b_1} \) and \( \vec{b_2} \): \[ \vec{b_1} = (1, -3, -2), \quad \vec{b_2} = (1, -3, 4) \] Using the determinant formula for cross products: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & -2 \\ 1 & -3 & 4 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} -3 & -2 \\ -3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 1 & -3 \end{vmatrix} \] \[ = \hat{i}((-3)(4) - (-2)(-3)) - \hat{j}((1)(4) - (1)(-2)) + \hat{k}((1)(-3) - (1)(-3)) \] \[ = \hat{i}(-12 - 6) - \hat{j}(4 + 2) + \hat{k}(0) \] \[ = -18 \hat{i} - 6 \hat{j} \] ### Step 4: Calculate the Magnitude of the Cross Product Now, we calculate the magnitude of the cross product: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-18)^2 + (-6)^2} = \sqrt{324 + 36} = \sqrt{360} = 6\sqrt{10} \] ### Step 5: Calculate the Shortest Distance The formula for the shortest distance \( d \) between the two skew lines is given by: \[ d = \frac{|\vec{A_2 - A_1} \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \] First, we calculate the dot product \( \vec{A_2 - A_1} \cdot (\vec{b_1} \times \vec{b_2}) \): \[ \vec{A_2 - A_1} = (-3, 2, 2) \] \[ \vec{b_1} \times \vec{b_2} = (-18, -6, 0) \] \[ \vec{A_2 - A_1} \cdot (\vec{b_1} \times \vec{b_2}) = (-3)(-18) + (2)(-6) + (2)(0) = 54 - 12 + 0 = 42 \] Now substituting into the distance formula: \[ d = \frac{|42|}{6\sqrt{10}} = \frac{42}{6\sqrt{10}} = \frac{7}{\sqrt{10}} \] ### Step 6: Express in the Form \( \frac{m}{\sqrt{n}} \) Here, we have: \[ d = \frac{7}{\sqrt{10}} \] where \( m = 7 \) (which is a prime number) and \( n = 10 \). ### Step 7: Calculate \( n - m \) Finally, we compute: \[ n - m = 10 - 7 = 3 \] Thus, the answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec r=(1-lambda)hat i+(lambda-2)hat j+(3-2 lambda)hat k and vec r=(mu+1)hat i+(2 mu+1)hat k

The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

Find the shortest distance between the lines vec r=(hat i+2hat j-4hat k)+lambda(2hat i+3hat j+6hat k),vec r=(3hat i+3hat j-5hat k)+lambda(2hat i+3hat j+6hat k)

Find the shortest distance between the following two lines: vec r=(1+lambda)hat i+(2-lambda)hat j+(lambda+1)hat kvec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If the shortest distance between two skew lines vec r1 = (5 + mu) hat ...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |