Home
Class 12
MATHS
Integrate : int xsqrt(x+x^2)dx...

Integrate : `int xsqrt(x+x^2)dx`

Text Solution

AI Generated Solution

To solve the integral \( \int x \sqrt{x + x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting the expression under the square root: \[ \sqrt{x + x^2} = \sqrt{x(1 + x)} = \sqrt{x} \sqrt{1 + x} \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int xsqrt(1-x-x^(2)dx)

Integrate int sqrt(7x-x^(2)-10)dx

int xsqrt(3x-2) dx=

int_0^2 xsqrt(x+2)dx

int xsqrt(x^(4)+9) dx

int xsqrt(9^(3)+x^(2))dx

Integrate : int ( x / sqrt( 1 + x^2 ) ) dx

Integrate : int( x sqrt( x + 5 )) dx

int xsqrt(x^(2)+a^(2))dx=

int xsqrt(a^(2)-x^(2))dx=