Home
Class 12
MATHS
Integrate (x+1)sqrt(2x^2+3)...

Integrate `(x+1)sqrt(2x^2+3)`

Text Solution

AI Generated Solution

To solve the integral \(\int (x+1)\sqrt{2x^2+3} \, dx\), we can break it down into two parts: 1. \(\int x\sqrt{2x^2+3} \, dx\) 2. \(\int \sqrt{2x^2+3} \, dx\) Let's denote these integrals as \(I_1\) and \(I_2\) respectively. Therefore, we can express the original integral as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Integrate (2x+1)sqrt(4x+3) .

Integrate: (x)/(sqrt(x^(4)+x^(2)+1))

Integrate 1//sqrt((4+3x-2x^(2))) .

Integrate : int((x+sqrt(1+x^2))^(2009))/(sqrt(1+x^2))dx

Integrate 1//[(1+x)sqrt((1-x^(2)))] .

Integrate (3x+1)//(2x^(2)-2x+3) .

Integration of (1)/(sqrt(x^(2)=9)) with respect to (x^(2)+1) is equal to

Integrate the Following Integral int (2x-3)/sqrt(2x^2-6x+1) dx

Integrate {sqrt(1-x^(2))+(x^(2))/(sqrt(1-x^(2)))}