Home
Class 12
MATHS
If (x^(2))/(144)-(y^(2))/(25)=1. Find th...

If `(x^(2))/(144)-(y^(2))/(25)=1`. Find the range of `(144)/(x)+(25)/(y)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the expression \(\frac{144}{x} + \frac{25}{y}\) given the hyperbola defined by the equation \(\frac{x^2}{144} - \frac{y^2}{25} = 1\). ### Step-by-Step Solution: 1. **Rewrite the Hyperbola Equation**: We start by rewriting the given hyperbola equation: \[ \frac{x^2}{144} - \frac{y^2}{25} = 1 \] This can be expressed in terms of squares: \[ \left(\frac{x}{12}\right)^2 - \left(\frac{y}{5}\right)^2 = 1 \] 2. **Parametric Representation**: For hyperbolas, we can use the parametric equations: \[ x = 12 \sec(\theta) \quad \text{and} \quad y = 5 \tan(\theta) \] where \(\theta\) is a parameter. 3. **Substituting into the Expression**: Now, we substitute these parametric representations into the expression we want to find the range of: \[ \frac{144}{x} + \frac{25}{y} = \frac{144}{12 \sec(\theta)} + \frac{25}{5 \tan(\theta)} \] Simplifying this gives: \[ = \frac{12}{\sec(\theta)} + \frac{5}{\tan(\theta)} = 12 \cos(\theta) + 5 \cot(\theta) \] 4. **Expressing Cotangent**: Recall that \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\), so we can rewrite the expression as: \[ 12 \cos(\theta) + 5 \frac{\cos(\theta)}{\sin(\theta)} = \cos(\theta) \left(12 + \frac{5}{\sin(\theta)}\right) \] 5. **Finding Maximum and Minimum Values**: To find the maximum and minimum values of \(12 \cos(\theta) + 5 \sin(\theta)\), we can use the formula for the maximum value of \(a \cos(\theta) + b \sin(\theta)\): \[ \sqrt{a^2 + b^2} \] Here, \(a = 12\) and \(b = 5\): \[ \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] Therefore, the maximum value is \(13\) and the minimum value is \(-13\). 6. **Conclusion**: The range of the expression \(\frac{144}{x} + \frac{25}{y}\) is: \[ [-13, 13] \] ### Final Answer: The range of \(\frac{144}{x} + \frac{25}{y}\) is \([-13, 13]\).

To solve the problem, we need to find the range of the expression \(\frac{144}{x} + \frac{25}{y}\) given the hyperbola defined by the equation \(\frac{x^2}{144} - \frac{y^2}{25} = 1\). ### Step-by-Step Solution: 1. **Rewrite the Hyperbola Equation**: We start by rewriting the given hyperbola equation: \[ \frac{x^2}{144} - \frac{y^2}{25} = 1 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then find the value of b^(2)

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide write the value of b^(2).

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(125) coincide, the find the value of b^(2) .

If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then length of semi-minor axis is

The product of perpendicular drawn from any point on (x^(2))/(9)-(y^(2))/(16)=1 upon its asymptote is (A) (125)/(144) (B) (144)/(25) (C) (25)/(144) (D) (144)/(125)