Home
Class 12
MATHS
If x^(2)+y^(2)+6x-4y-12=0 then find the ...

If `x^(2)+y^(2)+6x-4y-12=0` then find the ragne of 2x+y

Text Solution

Verified by Experts

The correct Answer is:
`[-5sqrt(5)-4,5sqrt(5)-4]`

We have `(x+3)^(2)+(y-2)^(2)=5^(2)`
Let `x=3+5cos theta` and `y=2+5 sin theta`
`therefore 2x+y=-6+2+10cos theta+5 sin theta`
`=-4+5(2cos theta+sin theta)`
Now, `(2cos theta+sin theta)in[-sqrt(5),sqrt(5)]`
`therefore 2x+y=-4+5(2cos theta+sin theta)in[-5sqrt(5),-4,5sqrt(5)-4]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the equation of the circle through the points of interrection of the circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+6x+4y-12=0 and cutting the circle x^(2)+y^(2)-2x-4=0 orthogonally.

Let the equation of circle is x ^(2) + y ^(2) - 6x + 4y + 12=0. Then the line 3x - 4y + 5 is a

The equation of the circle concentric with the circle x^(2) + y^(2) - 6x - 4y - 12 =0 and touching y axis

Lengths of intercepts by circle x^(2) + y^(2) - 6x + 4y - 12 = 0 " on line " 4x - 3y + 2 = 0 is

The equation of the image of the circle x^(2)+y^(2)-6x-4y+12=0 by the mirror x+y-1=0 is

Find the equation of the circle passing through the point of intersection of the circles x^(2)+y^(2)-6x+2y+4=0,x^(2)+y^(2)+2x-4y-6=0 and with its centre on the line y=x

If the circle x^(2)+y^(2)+8x-4y+c=0 touches the circle x^(2)+y^(2)+2x+4y-11=0 externally and cuts the circle x^(2)+y^(2)-6x+8y+k=0 orthogonally then k

Number of common tangents to the circles C_(1):x ^(2) + y ^(2) - 6x - 4y -12=0 and C _(2) : x ^(2) + y ^(2) + 6x + 4y+ 4=0 is

If x=5 and y=-2 , then find the value of (i) (8x-2y+5)/(2x+4ty+12) " "(ii) (5x-6y-7)/(3x+6y+12)

Find the equation of the circle which cuts each of the circles x^(2)+y^(2)=4x^(2)+y^(2)-6x-8y.+10=0&x^(2)+y^(2)+2x-4y-2=0 at the extremities of a diameter