Home
Class 12
MATHS
Solve (sin 10^(@))^(tan x+tan 3x)=tan 15...

Solve `(sin 10^(@))^(tan x+tan 3x)=tan 15^(@)+tan 30^(@)+ tan 15^(@). Tan 30^(@), x in (0, pi]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin 10^\circ)^{(\tan x + \tan 3x)} = \tan 15^\circ + \tan 30^\circ + \tan 15^\circ \cdot \tan 30^\circ\) for \(x\) in the interval \((0, \pi]\), we can follow these steps: ### Step 1: Simplify the Right-Hand Side (RHS) First, we need to calculate the values of \(\tan 15^\circ\) and \(\tan 30^\circ\). Using the tangent addition formula: \[ \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] Where \(\tan 45^\circ = 1\) and \(\tan 30^\circ = \frac{1}{\sqrt{3}}\): \[ \tan(15^\circ) = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] Now, calculate \(\tan 30^\circ\): \[ \tan(30^\circ) = \frac{1}{\sqrt{3}} \] Now substituting these values into the RHS: \[ \tan 15^\circ + \tan 30^\circ + \tan 15^\circ \cdot \tan 30^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}} + \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1} \cdot \frac{1}{\sqrt{3}}\right) \] ### Step 2: Calculate the Product Calculating the product: \[ \tan 15^\circ \cdot \tan 30^\circ = \frac{(\sqrt{3} - 1)}{(\sqrt{3} + 1) \cdot \sqrt{3}} = \frac{\sqrt{3} - 1}{3 + \sqrt{3}} \] Now, combine all terms: \[ \text{RHS} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}} + \frac{\sqrt{3} - 1}{3 + \sqrt{3}} \] ### Step 3: Solve for the Left-Hand Side (LHS) The LHS is \((\sin 10^\circ)^{(\tan x + \tan 3x)}\). For this to equal the RHS, we need to find when \(\tan x + \tan 3x = 0\). Using the identity: \[ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \] Setting \(\tan x + \tan 3x = 0\): \[ \tan x + \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} = 0 \] ### Step 4: Find Values of \(x\) This leads to: \[ \tan x (1 - 3\tan^2 x) + (3\tan x - \tan^3 x) = 0 \] This simplifies to: \[ \tan x (4 - 4\tan^2 x) = 0 \] Thus, \(\tan x = 0\) or \(4 - 4\tan^2 x = 0\). From \(\tan x = 0\), we have: \[ x = n\pi \quad (n \in \mathbb{Z}) \] In the interval \((0, \pi]\), we have \(x = \pi\). From \(4 - 4\tan^2 x = 0\): \[ \tan^2 x = 1 \Rightarrow \tan x = \pm 1 \] This gives: \[ x = \frac{\pi}{4}, \frac{3\pi}{4} \] ### Step 5: Final Values Thus the solutions for \(x\) in the interval \((0, \pi]\) are: \[ x = \frac{\pi}{4}, \frac{3\pi}{4}, \pi \]

To solve the equation \((\sin 10^\circ)^{(\tan x + \tan 3x)} = \tan 15^\circ + \tan 30^\circ + \tan 15^\circ \cdot \tan 30^\circ\) for \(x\) in the interval \((0, \pi]\), we can follow these steps: ### Step 1: Simplify the Right-Hand Side (RHS) First, we need to calculate the values of \(\tan 15^\circ\) and \(\tan 30^\circ\). Using the tangent addition formula: \[ \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

S o l v e(sin1 0^(@))^(tanx+tan3x)=tan1 5^(@)+tan3 0^(@)+tan1 5^(@)tan3 0^(@), x in (0,pi]

(tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@)) equal

tan x+tan2x+tan3x=0

The value of tan10^(@)tan15^(@)tan75^(@)tan80^(@) is

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

(tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@))=tan30

tan 40^(@) +2* tan 10^(@) = A) tan30^(@) B) tan50^(@) C) tan70^(@) D) tan90^(@)

Solve sin x tan x-sin x + tan x-1 = 0

tan^(3)x-3tan x=0

find x if 3tan(x-15^(@))=tan(x+15^(@))