Home
Class 12
MATHS
Solve 2^(cos 2x)+1=3.2^(-sin^(2) x)...

Solve `2^(cos 2x)+1=3.2^(-sin^(2) x)`

Text Solution

Verified by Experts

The correct Answer is:
`x=n pi, n in Z or x=n pi pm pi/2, n in Z`

`2^(cos 2x)+1=3.2^(- sin^(2)x)`
`rArr 2^(1-2 sin^(2) x)+1=3.2^(- sin^(2) x)`
Let `2^(- sin^(2) x)=t`
Now, given equation reduces to
`2t^(2)+1=3t`
`rArr t=1 and t=1//2`
If `t=1` then `sin^(2) x=0`
`rArr x=npi, n in I`
If `t=1/2` then `sin^(2) x=1`
`rArr x=npi pm pi/2, n in I`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.7|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.4|9 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve sin 2x+cos x=0

Solve sin5x=cos2x

Solve 2 sin^(3) x=cos x .

Solve sin 2x=4 cos x .

Solve 4cos x(2 -3sin^(2)x)+cos2x+1=0

Solve sin 2x+cos 4x=2 .

Solve 1+cos3x=2cos2x

Solve 2sqrt(2)cos x+sin x=3

Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Solve sin 3x + cos 2 x =-2