Home
Class 12
MATHS
If a(i) gt 0 (I - 1,2,3,….n) prove that ...

If `a_(i) gt 0` (I - 1,2,3,….n) prove that
`sum_(I ge I ge j ge n) sqrt(a_(i)a_(j)) le (n - 1)/(2) (a_(1) + a_(2) + …. + a_(n))`

Text Solution

Verified by Experts

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If a_(i)>0(i=1,2,3...n), prove that sum_(1<=i

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (a + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

If a_(1),a_(2),a_(3)….a_(n) are positive and (n-1)s = a_(1)+a_(2)+….+ a_(n) then prove that a_(1),a_(2),a_(3)…a_(n) ge (n-1)^(n)(s-a_(1))(s-a_(2))….(s-a_(n))

If a_(1)gt0 for all i=1,2,…..,n . Then, the least value of (a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n))) , is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is