Home
Class 12
MATHS
Find the minimum value of 2^("sin" x) + ...

Find the minimum value of `2^("sin" x) + 2^("cos" x)`

Text Solution

Verified by Experts

The correct Answer is:
`2^(1 - (1)/(sqrt(2))`

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of sin^(2)x

Find the minimum value of sin x + cos x.

Knowledge Check

  • The maximum and minimum value of 6 "sin" x "cos" x +4 "cos" 2x are respectively.

    A
    5,5
    B
    `-5,5`
    C
    `5,-5`
    D
    `-4,4`
  • Minimum value of 27^(cos 2x) 81^( sin 2x) is

    A
    `(1)/(243)`
    B
    `(1)/(27)`
    C
    `-5`
    D
    `(1)/(5)`
  • The minimum value of f(x)= a sin x+b cos x is

    A
    `-sqrt(a^(2)+b^(2))`
    B
    `sqrt((a^(2)+b^(2))`
    C
    `(-1)/(sqrt(a^(2)+b^(2)))`
    D
    `(1)/(sqrt(a^(2)+b^(2)))`
  • Similar Questions

    Explore conceptually related problems

    Find the minimum value of 4^(sin^(2)x)+4^(cos^(2)x)

    A minimum value of sin x cos2x is -

    The minimum value of sin x+cos x-1 is

    Find the minimum value of k = sin^(6)x + cos^(6)x

    The minimum value of 27^(cos 2x)+81^(sin 2x) is