Home
Class 12
MATHS
Prove that the greatest value of x y is ...

Prove that the greatest value of `x y` is `c^3//sqrt(2a b)dot` if `a^2x^4+b^4y^4=c^6dot`

Text Solution

Verified by Experts

Using `A.M ge G.M`., we get
`(a^2x^4+b^2y^4)/(2) ge 9a^2x^4b^2y^4)^(1)/(2)`
`therefore (e^6)/(2) ge (a^2x^4b^2y^4)^(1)/(2)`
`rArr (c^6)/(2) ge abx^2y^2`
`rArr xyle (c^3)/(sqrt(2ab))`
Hence , `(xy)_("max")=(c^3)/(sqrt(2ab))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Prove that the greatest value of xy is c^(3)/sqrt(2ab)* if a^(2)x^(4)+b^(2)y^(4)=c^(6).

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(3))/(2ab) (b) (c^(3))/(sqrt(2ab)) (c) (c^(3))/(ab) (d) (c^(3))/(sqrt(ab))

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

For a^(2)+b^(2)+c^(2)=1 and a,b,c are positive, the greatest value of a^(2)b^(3)c^(4) is 2^(x)3^(y) .Then the value of x is

If 2x+y=5 and 3x-4y=2, then the value of 2xy is (a) 4 (b) 6 (c) 8 (d) 10

The greatest integral value of a such that sqrt(9-a^(2)+2x-x^(2))>=sqrt(16-x^(2)) for at least one positive value of x is (a) 3 (b) 4 (c) 6 (d) 7

If [x y4z+6x+y]=[8w0 6], write the value of (x+y+z)dot

For the equations given below, tell the nature of graphs. (a) y =2x^(2) (b) y =-4x^(2) +6 (c) y = 6 ^(-4x) (d) y = 4(1 -e^(-2x)) (e) y =(4)/(x) (f) y =-(2)/(x)

A normal drawn to the parabola y^2=4a x meets the curve again at Q such that the angle subtended by P Q at the vertex is 90^0dot Then the coordinates of P can be (a)(8a ,4sqrt(2)a) (b) (8a ,4a) (c)(2a ,-2sqrt(2)a) (d) (2a ,2sqrt(2)a)