Home
Class 12
MATHS
In A B C , prove that t a n A+t a n B+t...

In ` A B C` , prove that `t a n A+t a n B+t a n Cgeq3sqrt(3),w h e r eA ,B ,C` are acute angles.

Text Solution

Verified by Experts

In `Delta ABC`,
`tan-A+tan B+tan C=tan A tan B tan C`
Also,
`(tan A+ tan B +tan C)/(3) ge 3sqrt(tan A tan B tan C)`
or `tan A tan B tan C ge 3sqrt(tan A tan B tan C)`
or `tan^2 A tan^2 B tan^2 C ge 27`
or `tan A tan B tan C ge 3sqrt(3)`
or `tan A+tan B +tan C ge 3sqrt(3)` .
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC, prove that tan A+tan B+tan C>=3sqrt(3), where A,B,C are acute angles.

Prove that in Delta ABCtan A+tan B+tan C>=3sqrt(3); where A;B;C are acute angles.

Prove that in ABC,tan A+tan B+tan C>=3sqrt(3) where A,B,C are acute angles.

If A+B+C=180^0 , then (t a n A+t a n B+t a n C)/(t a n A t a n B t a n C) is equal to t a n A t a n B t a n C b. 0 c. 1 d. none of these

In triangle A B C ,poin t sD , Ea n dF are taken on the sides B C ,C Aa n dA B , respectigvely, such that (B D)/(D C)=(C E)/(E A)=(A F)/(F B)=ndot Prove that _(D E F)=(n^2-n+1)/((n+1)^2)_(A B C)dot

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: If A is obtuse angle I A B C , then tanB\ t a n C<1 because Statement II: In A B C ,\ t a n A=(t a n B+t a n C)/(t a n B t a n C-1)\ a. A b. \ B c. \ C d. D

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

If A >0,\ B >0\ a n d\ A+B=\ pi/6 , then the minimum value of t a n A+t a n B is: 2-sqrt(3) b. 4-2sqrt(3) c. sqrt(3)-sqrt(2) d. 2/(sqrt(3))

In Figure, A B C D is a trapezium in which A B\ D C\ a n d\ D C=40\ c m\ a n d\ A B=60\ c mdot If X\ a n d\ Y are, respectively, the mid-points of A D\ a n d\ B C , prove that: a r\ (t r a pdotD C Y X)=9/(11)\ a r\ (t r a pdot(X Y B A)

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot