Home
Class 12
MATHS
lf abcd=1 where a,b,c,d are positive re...

lf `abcd=1` where a,b,c,d are positive reals then the minimum value of `a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd` is

Text Solution

Verified by Experts

The correct Answer is:
10

Given,abcd `=1`
We know that , `AM ge GM`
`therefore (a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd)/(10)`
`ge [a^2xxb^2xxc^2xxd^2xx(ab)xx(ac)xx(ad)xx(bc)xx(bd)xx(cd)]^(1//10)`
`=(a^5xxb^5xxc^5xxd^5)^(1//10)`
`=(abcd)^(1//2)`
`=(1)^(1//2)`
`rArr (a^2b^2+c^2+d^2+ab+ac+ad+bc+bd+cd)/(10) ge 1`
`rArr a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd +cd ge 10`.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If abcd=1 where a,b,c,d are positive reals then the minimum value of a^(2)+b^(2)+c^(2)+d^(2)+ab+ac+ad+bc+bd+cd is

Consider the expression ((a^2 + a + 1)(b^2 + b + 1) (c^2 + c + 1)(d^2 + d+ 1)(e^2 + e + 1))/(abcde) where a, b, c, d and e are positive numbers. The minimum value of the expression is

If a:b=c:d then value of (a^(2)+b^(2))/(c^(2)+d^(2)) is

If a,b,c are positive real numbers such that a+b+c=1 , then find the minimum value of (1)/(ab)+(1)/(bc)+(1)/(ac) .

If a: b= 5:7 and c:d=2a:3b, then ac: bd is :

If a, b, c and d are positive real numbers such that a+b+c+d= 1 then prove that ab + bc + cd + da le 1/4 .

If a,b,c and d are four positive real numbers such that abcd =1, what is the minimum value of (1+a)(1+b)(1+c)(1+d)