Home
Class 12
MATHS
If f(x)={{:(x+(1)/(2)",",xlt0),(2x+(3)/(...

If `f(x)={{:(x+(1)/(2)",",xlt0),(2x+(3)/(4)",",xge0):},"then"[lim_(xrarr0) f(x)]="(where[.] denotes the greatest integer function)"`

A

`(1)/(2)`

B

`(3)/(4)`

C

does not exist

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the function \( f(x) \) as \( x \) approaches 0 from both the left and the right, and then determine the greatest integer of that limit. ### Step-by-step Solution: 1. **Identify the function**: The function is defined as: \[ f(x) = \begin{cases} x + \frac{1}{2} & \text{if } x < 0 \\ 2x + \frac{3}{4} & \text{if } x \geq 0 \end{cases} \] 2. **Calculate the left-hand limit (LHL)**: We need to find: \[ \lim_{x \to 0^-} f(x) \] As \( x \) approaches 0 from the left, we use the first part of the function: \[ f(x) = x + \frac{1}{2} \] Therefore: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left( x + \frac{1}{2} \right) = 0 + \frac{1}{2} = \frac{1}{2} \] 3. **Calculate the right-hand limit (RHL)**: Now we find: \[ \lim_{x \to 0^+} f(x) \] As \( x \) approaches 0 from the right, we use the second part of the function: \[ f(x) = 2x + \frac{3}{4} \] Therefore: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left( 2x + \frac{3}{4} \right) = 2(0) + \frac{3}{4} = \frac{3}{4} \] 4. **Determine if the limit exists**: We have: - LHL = \( \frac{1}{2} \) - RHL = \( \frac{3}{4} \) Since LHL \( \neq \) RHL, the limit does not exist: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] 5. **Conclusion**: Since the limit does not exist, we conclude that the answer to the question is: \[ \text{The limit does not exist.} \] ### Final Answer: The greatest integer function of the limit is: \[ \text{Answer: Does not exist.} \]

To solve the problem, we need to find the limit of the function \( f(x) \) as \( x \) approaches 0 from both the left and the right, and then determine the greatest integer of that limit. ### Step-by-step Solution: 1. **Identify the function**: The function is defined as: \[ f(x) = ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Evaluate lim_(xrarr0) f(x) , where

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greate...

    Text Solution

    |

  2. lim(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest ...

    Text Solution

    |

  3. If f(x)={{:(x+(1)/(2)",",xlt0),(2x+(3)/(4)",",xge0):},"then"[lim(xrarr...

    Text Solution

    |

  4. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  5. Which of the following limits exists finitely?

    Text Solution

    |

  6. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  7. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  8. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  9. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  10. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  11. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  12. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  13. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  14. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  15. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  16. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  17. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  18. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  19. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  20. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |