Home
Class 12
MATHS
Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=l...

Let `L_(1)=lim_(xrarr4) (x-6)^(x)and L_(2)=lim_(xrarr4) (x-6)^(4)`.
Which of the following is true?

A

Both `L_(1) and L_(2)` exists

B

Neither `L_(1)` nor `L_(2)` exists

C

`L_(1)` exists but `L_(2)` does not exist

D

`L_(2)` exists but `L_(1)` does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limits \( L_1 = \lim_{x \to 4} (x - 6)^x \) and \( L_2 = \lim_{x \to 4} (x - 6)^4 \), we will analyze each limit step by step. ### Step 1: Evaluate \( L_1 = \lim_{x \to 4} (x - 6)^x \) 1. Substitute \( x = 4 \) into the expression: \[ L_1 = (4 - 6)^4 = (-2)^4 \] However, we notice that as \( x \) approaches 4, the base \( (x - 6) \) approaches \( -2 \), while the exponent \( x \) approaches \( 4 \). 2. Since the base \( (x - 6) \) approaches a negative number and the exponent \( x \) is variable, we have a situation where we are raising a negative number to a variable power. This can lead to undefined behavior depending on the value of \( x \). 3. Therefore, we conclude that: \[ L_1 \text{ does not exist.} \] ### Step 2: Evaluate \( L_2 = \lim_{x \to 4} (x - 6)^4 \) 1. Substitute \( x = 4 \) into the expression: \[ L_2 = (4 - 6)^4 = (-2)^4 \] 2. Since \( 4 \) is a constant exponent, we can compute this directly: \[ L_2 = 16 \] ### Conclusion - \( L_1 \) does not exist because we have a variable exponent with a negative base. - \( L_2 \) exists and equals \( 16 \). Thus, the correct statement is that \( L_1 \) does not exist and \( L_2 \) exists. ### Final Answer - \( L_1 \text{ does not exist} \) - \( L_2 = 16 \)

To solve the limits \( L_1 = \lim_{x \to 4} (x - 6)^x \) and \( L_2 = \lim_{x \to 4} (x - 6)^4 \), we will analyze each limit step by step. ### Step 1: Evaluate \( L_1 = \lim_{x \to 4} (x - 6)^x \) 1. Substitute \( x = 4 \) into the expression: \[ L_1 = (4 - 6)^4 = (-2)^4 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let L_(1)=lim_(x rarr4)(x-6)^(x)ndL_(2)=lim_(x rarr4)(x-6)^(4) Which of the following is true? Both L_(1) and L_(2) exists Neither L_(1) and L_(2) exists L_(1) exists but L_(2) does not exist L_(2) exists but L_(1) does not exist

lim_(xrarr4) (4x+3)/(x-2)

lim_(xrarr4)(2x+3)/(x-2)

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)

lim_(xrarr1)(x^2+3x-4)/(x-1)=?

Let L_(1)=lim_(x rarr0)((sin(2x)+cos(x)-1)/(x)) , L_(2)=lim_(x rarr oo)(sqrt(x^(2)-x)-x) , and L_(3)=lim_(x rarr4)(x^(2)-3x)/(x^(2)-x) , then the value of L_(1)L_(2)+(1)/(L_(3)) is

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  2. Which of the following limits exists finitely?

    Text Solution

    |

  3. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  4. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  5. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  6. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  7. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  8. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  9. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  10. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  11. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  12. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  13. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  14. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  15. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  16. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  17. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  18. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  19. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  20. lim(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

    Text Solution

    |