Home
Class 12
MATHS
If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) the...

If `f(x)=x((e^(|x|+[x])-2)/(|x|+[x]))` then (where [.] represent the greatest integer function)

A

`underset(xrarr0^(+))(lim)f(x)=-1`

B

`underset(xrarr0^(-))(lim)f(x)=0`

C

`underset(xrarr0)(lim)f(0)=-1`

D

`underset(xrarr0)(lim)f(x)=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`underset(xrarr0^(+))(lim)x((e^(|x|+[x])-2)/(|x|+[x]))`
`=underset(xrarr0^(+))(lim)x((e^(x+0)-2)/(x+0))`
`=underset(xrarr0^(+))(lim)(e^(x)-2)`
`=1-2=-1`
`underset(xrarr0^(-))(lim)x((e|x|+[x]-2)/(|x|+[x]))`
`=underset(xrarr0^(-))(lim)x((e^(-x-1)-2)/(-x-1))=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [] represents the greatest integer function).

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Let f(x) = [x] and [] represents the greatest integer function, then