Home
Class 12
MATHS
Assume that lim(thetararr-1) f(theta) ex...

Assume that `lim_(thetararr-1) f(theta)` exists and `(theta^(2)+theta-2)/(theta+3)le(f(theta))/(theta^(2))le(theta^(2)+2theta-1)/(theta+3)` holds for certain interval containing the point `theta=-1 " then "lim_(thetararr-1) f(theta)`

A

is equal to `f(-1)`

B

is equal to 1

C

is non-existent

D

is equal to `-1`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`(theta^(2)+theta-2)/(theta+3)le(f(theta))/(theta^(2))le(theta^(2)+2theta-1)/(theta+3)`
`"Putting "theta=-1, " we get"`
`(1-1-2)/(2)lef(-1)le(1-2-1)/(2)`
`rArr -1 le f(-1)le -1 " "rArr" "f(-1)=-1`
Also, `underset(thetararr-1)(lim)(theta^(2)+theta-2)/(theta+3)=-1=underset(thetararr-1)(lim)(theta^(2)+2theta-1)/(theta+3)`
Using sandwich theorem
`underset(theta rarr-1)(lim)(f(theta))/(theta^(2))=-1,underset(thetararr-1)(lim)f(theta)=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Assume that lim_(theta rarr1)f(theta) exists and (theta^(2)+theta-2)/(theta+3)<=(f(theta))/(theta^(2))<=(theta^(2)+2 theta-1)/(theta+3) holds for certain interval containing the point theta=-1 then lim_(theta rarr-1)f(theta) is equal to f(-1) b.is equal to 1c is non-existent d.is equal to -1

lim_(theta rarr0)(3tan theta-tan3 theta)/(2 theta^(3))

lim_(theta rarr3^(+))([theta])/(theta)

If: f(theta)=log((1+theta)/(1-theta)), then: f((2theta)/(1+theta^2))=

lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

Prove that lim_(theta rarr(pi)/(2))(2cos theta)/(pi-2 theta)=1

lim_(theta rarr(pi)/(4))(1-tan theta)/(1-sqrt(2)sin theta)

Range of f(theta)=cos^(2)theta(cos^(2)theta+1)+2sin^(2)theta is

If tan theta_(1).tantheta_(2)=k , then: (cos(theta_(1)-theta_(2))/(cos(theta_(1)+theta_(2)))=