Home
Class 12
MATHS
The value of lim(xrarr0) (sqrt(1-cosx^(2...

The value of `lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x)` is

A

`(1)/(2)`

B

`2`

C

`sqrt2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 0} \frac{\sqrt{1 - \cos(x^2)}}{1 - \cos x} \), we can follow these steps: ### Step 1: Rewrite the expressions using trigonometric identities We know that \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \). Using this identity, we can rewrite both the numerator and the denominator. \[ 1 - \cos(x^2) = 2 \sin^2\left(\frac{x^2}{2}\right) \] \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] ### Step 2: Substitute these identities into the limit Now, substituting these into our limit gives us: \[ \lim_{x \to 0} \frac{\sqrt{2 \sin^2\left(\frac{x^2}{2}\right)}}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 3: Simplify the expression The square root in the numerator simplifies: \[ = \lim_{x \to 0} \frac{\sqrt{2} \sin\left(\frac{x^2}{2}\right)}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 4: Factor out constants We can factor out \( \frac{\sqrt{2}}{2} \): \[ = \frac{\sqrt{2}}{2} \lim_{x \to 0} \frac{\sin\left(\frac{x^2}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \] ### Step 5: Change variables for the limit Let \( y = \frac{x}{2} \), then as \( x \to 0 \), \( y \to 0 \) as well. Thus, \( x^2 = 4y^2 \) and we can rewrite the limit: \[ = \frac{\sqrt{2}}{2} \lim_{y \to 0} \frac{\sin(2y^2)}{\sin^2(y)} \] ### Step 6: Apply the limit Using the small angle approximation \( \sin z \approx z \) as \( z \to 0 \): \[ = \frac{\sqrt{2}}{2} \lim_{y \to 0} \frac{2y^2}{y^2} = \frac{\sqrt{2}}{2} \cdot 2 = \sqrt{2} \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1 - \cos(x^2)}}{1 - \cos x} = \sqrt{2} \] ---

To find the limit \( \lim_{x \to 0} \frac{\sqrt{1 - \cos(x^2)}}{1 - \cos x} \), we can follow these steps: ### Step 1: Rewrite the expressions using trigonometric identities We know that \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \). Using this identity, we can rewrite both the numerator and the denominator. \[ 1 - \cos(x^2) = 2 \sin^2\left(\frac{x^2}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (sqrt(1-cosx^2))/(1-cosx) , is

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

The value of lim_(xrarr 0)(1-cosx)/(2x^(2)) is

Evaluate lim_(xrarr0)((1-cosx))/(x^(2)).

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

lim_(xrarr0) (3sqrt(1+x-1))/(x)

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  2. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  3. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  4. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  5. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  6. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  7. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  8. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  9. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  10. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  11. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  12. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  13. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  14. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  15. lim(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

    Text Solution

    |

  16. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  17. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  18. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  19. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  20. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |