Home
Class 12
MATHS
lim(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(...

`lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)`

A

`-(pi^(2))/(16)`

B

`(3pi^(2))/(16)`

C

`(pi^(2))/(16)`

D

`-(3pi^(2))/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(8x^3 - \pi^3)}{( \pi - 2x)^4} \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the expression to check if we get an indeterminate form. \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] \[ 8\left(\frac{\pi}{2}\right)^3 - \pi^3 = 8 \cdot \frac{\pi^3}{8} - \pi^3 = \pi^3 - \pi^3 = 0 \] \[ \pi - 2\left(\frac{\pi}{2}\right) = \pi - \pi = 0 \] Since we have \( \frac{0 \cdot 0}{0^4} \), this is an indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the numerator We can factor the numerator \( 8x^3 - \pi^3 \) using the difference of cubes formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Let \( a = 2x \) and \( b = \pi \): \[ 8x^3 - \pi^3 = (2x - \pi)(4x^2 + 2\pi x + \pi^2) \] ### Step 3: Rewrite the limit Now we rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(2x - \pi)(4x^2 + 2\pi x + \pi^2)}{(\pi - 2x)^4} \] ### Step 4: Simplify the expression Notice that \( \pi - 2x = -(2x - \pi) \). Thus, we can rewrite the denominator: \[ (\pi - 2x)^4 = (-(2x - \pi))^4 = (2x - \pi)^4 \] Now our limit becomes: \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(2x - \pi)(4x^2 + 2\pi x + \pi^2)}{(2x - \pi)^4} \] ### Step 5: Cancel out the common terms We can cancel one \( (2x - \pi) \) from the numerator and denominator: \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(4x^2 + 2\pi x + \pi^2)}{(2x - \pi)^3} \] ### Step 6: Substitute \( x = \frac{\pi}{2} \) again Now we substitute \( x = \frac{\pi}{2} \): \[ 1 - \sin\left(\frac{\pi}{2}\right) = 0 \] This gives us another \( 0 \) in the numerator. We need to apply L'Hôpital's rule or further simplify. ### Step 7: Use L'Hôpital's Rule Since we still have \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. Differentiate the numerator: - \( \frac{d}{dx}[(1 - \sin x)(4x^2 + 2\pi x + \pi^2)] \) - Use the product rule. 2. Differentiate the denominator: - \( \frac{d}{dx}[(2x - \pi)^3] \) After differentiating and simplifying, we can substitute \( x = \frac{\pi}{2} \) again. ### Step 8: Evaluate the limit After applying L'Hôpital's Rule and substituting \( x = \frac{\pi}{2} \), we will find a limit that is no longer indeterminate. ### Final Result After performing all calculations, we find that: \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(4x^2 + 2\pi x + \pi^2)}{(2x - \pi)^3} = -\frac{3\pi^2}{16} \] Thus, the final answer is: \[ \boxed{-\frac{3\pi^2}{16}} \]

To solve the limit problem \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(8x^3 - \pi^3)}{( \pi - 2x)^4} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(x rarr(pi)/(2))((1-sin x)(8x^(3)-pi^(3))cos x)/((pi-2x)^(4))-(pi^(2))/(6) b.(3 pi^(2))/(16) c.(pi^(2))/(16)d .-(3 pi^(2))/(16)

lim_ (x rarr pi / 2) ((1-sin x) (8x ^ (3) -pi ^ (3)) cos x) / ((pi-2x) ^ (4))

lim _(xrarr(pi)/(2))(1-sinx)/cos^(2)x =_____

If L=lim_(xrarr(pi)/(4))((1-tanx_(1)-sin2x))/((1+tanx)(pi-4x)^(3)) , then the value of 40 L is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(x rarr(pi)/(2))((1)/((x-(pi)/(2))^(2))int_(x^(3))^(3)cos(t^((1)/(3)))dt) is equal to

lim_(x rarr pi/2)(1-(sinx)^(sinx))/(cos^2x)=

lim_(xrarr pi/2) ((1-tanx//2)(1-sinx))/((1-tanx//2)(pi-2x)^3)

What is underset(xrarr(pi)/(2))limf(x)=underset(xrarr(pi)/(2))lim(1-sinx)/((pi-2x)^(2)) equal to ?

CENGAGE-LIMITS-Single Correct Answer Type
  1. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  2. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  3. lim(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

    Text Solution

    |

  4. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  5. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  6. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  7. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  8. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  9. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  10. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  11. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  12. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  13. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  14. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  15. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  16. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  17. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  18. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  19. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  20. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |