Home
Class 12
MATHS
Let f(x) be defined for all x in R such ...

Let f(x) be defined for all `x in R` such that `lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`. Then f(0) is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit given in the question: \[ \lim_{x \to 0} \left[ f(x) + \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) \right] = 0 \] ### Step 1: Simplify the expression inside the limit We can rewrite the limit expression as: \[ \lim_{x \to 0} \left[ f(x) + \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) \right] \] This can be simplified to: \[ \lim_{x \to 0} \left[ f(x) + \log\left(\frac{1 - \frac{1}{e^{f(x)}}}{f(x)}\right) \right] = 0 \] ### Step 2: Analyze the logarithmic term As \( x \to 0 \), we need to analyze the behavior of \( f(x) \). Assuming \( f(x) \to L \) as \( x \to 0 \), we can substitute \( L \) into the limit: \[ \lim_{x \to 0} \left[ L + \log\left(\frac{1 - \frac{1}{e^{L}}}{L}\right) \right] = 0 \] ### Step 3: Set the limit to zero For the limit to equal zero, we have: \[ L + \log\left(\frac{1 - \frac{1}{e^{L}}}{L}\right) = 0 \] This implies: \[ \log\left(\frac{1 - \frac{1}{e^{L}}}{L}\right) = -L \] ### Step 4: Exponentiate both sides Exponentiating both sides gives: \[ \frac{1 - \frac{1}{e^{L}}}{L} = e^{-L} \] ### Step 5: Rearranging the equation Rearranging the equation results in: \[ 1 - \frac{1}{e^{L}} = L e^{-L} \] ### Step 6: Solve for \( L \) Multiplying through by \( e^{L} \) gives: \[ e^{L} - 1 = L \] This is a transcendental equation. We can analyze it for potential solutions. ### Step 7: Check for specific values By inspection, we can check \( L = 0 \): \[ e^{0} - 1 = 0 \] This holds true. Thus, we find \( L = 0 \). ### Conclusion Since \( L = 0 \), we conclude that: \[ f(0) = 0 \]

To solve the problem, we need to evaluate the limit given in the question: \[ \lim_{x \to 0} \left[ f(x) + \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) \right] = 0 \] ### Step 1: Simplify the expression inside the limit ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

Let f(x) be defined for all x>0 and be continuous.Let f(x) satisfy f((4x)/(y))=f(x)-f(y) for all x,y and f(4e)=1, then (a) f(x)=ln4x( b) f(x) is bounded (c) lim_(x rarr0)f((1)/(x))=0 (d) lim_(x rarr0)xf(x)=0

Let f(x) be defined for all x>0 and be continuous.Let f(x) satisfies f((x)/(y))=f(x)-f(y) for all x,y and f(e)=1. Then (a) f(x) is bounded (d) (b) f((1)/(x))vec 0 as xvec 0 (c) f(x) is bounded (d) f(x)=(log)_(e)x

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If 3x+2y=1 is a tangent to y=f(x) at x=1//2 , then lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0) (f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

Let f:R rarr R be differentiable at x = 0. If f(0) = 0 and f'(0)=2 , then the value of lim_(xrarr0)(1)/(x)[f(x)+f(2x)+f(3x)+….+f(2015x)] is

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

CENGAGE-LIMITS-Single Correct Answer Type
  1. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  2. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  3. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  4. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  5. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  6. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  7. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  8. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  9. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  10. lim(xrarr0) (log(x^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  11. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  12. The value of lim(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

    Text Solution

    |

  13. If f(n)=lim(xrarr0) ((1+sin.(x))/(2))(1+sin.(x)/(2^(2)))...(1+sin.(x)/...

    Text Solution

    |

  14. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  15. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  16. lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  17. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  18. If f(a)=(1)/(4), then lim(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)...

    Text Solution

    |

  19. lim(xrarr0^(+)) (1)/(xsqrtx)(a tan^(-1).(sqrtx)/(a)-btan^(-1).(sqrtx)/...

    Text Solution

    |

  20. The value of lim(xrarr0) ((1+2x)/(1+3x))^((1)/(x^(2))).e^((1)/(e^(x)))...

    Text Solution

    |