Home
Class 12
MATHS
The value of lim(x rarr 0) (1-cos2x)/(e^...

The value of `lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x)` is

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{e^{x^2} - e^x + x}, \] we will use L'Hôpital's Rule since both the numerator and denominator approach 0 as \( x \) approaches 0, resulting in the indeterminate form \( \frac{0}{0} \). ### Step 1: Differentiate the numerator and denominator The numerator is \( 1 - \cos(2x) \). The derivative of this with respect to \( x \) is: \[ \frac{d}{dx}(1 - \cos(2x)) = 2\sin(2x). \] The denominator is \( e^{x^2} - e^x + x \). The derivative of this with respect to \( x \) is: \[ \frac{d}{dx}(e^{x^2} - e^x + x) = 2xe^{x^2} - e^x + 1. \] ### Step 2: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{e^{x^2} - e^x + x} = \lim_{x \to 0} \frac{2\sin(2x)}{2xe^{x^2} - e^x + 1}. \] ### Step 3: Evaluate the limit again As \( x \to 0 \), the numerator \( 2\sin(2x) \) approaches \( 0 \) and the denominator \( 2xe^{x^2} - e^x + 1 \) also approaches \( 0 - 1 + 1 = 0 \). We still have an indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again We differentiate the numerator and denominator again: - The derivative of \( 2\sin(2x) \) is \( 4\cos(2x) \). - The derivative of \( 2xe^{x^2} - e^x + 1 \) is: \[ \frac{d}{dx}(2xe^{x^2}) = 2e^{x^2} + 4x^2e^{x^2} - e^x. \] ### Step 5: Apply L'Hôpital's Rule again Now we have: \[ \lim_{x \to 0} \frac{4\cos(2x)}{2e^{x^2} + 4x^2e^{x^2} - e^x}. \] ### Step 6: Evaluate the limit Substituting \( x = 0 \): - The numerator becomes \( 4\cos(0) = 4 \). - The denominator becomes \( 2e^0 + 0 - e^0 = 2 - 1 = 1 \). Thus, we have: \[ \lim_{x \to 0} \frac{4}{1} = 4. \] ### Final Answer So, the value of the limit is \[ \boxed{4}. \]

To find the limit \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{e^{x^2} - e^x + x}, \] we will use L'Hôpital's Rule since both the numerator and denominator approach 0 as \( x \) approaches 0, resulting in the indeterminate form \( \frac{0}{0} \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(1-cos2x sec3x)/(x^(2)) is

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

The value of (lim)_(x rarr0)(e^(x^(2))-e^(x)+x)/(1-cos2x) is a.1 b.2 c.4d.8

lim_(x rarr0)(sin^(2)x(1-cos2x))/(x^(2))

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

The value of lim_(x rarr0)((1+2x)/(1+3x))^((1)/(x^(2)))*e^((1)/(x)) is e^((5)/(2))b.e^(2)ce^(-2)d.1

The value of lim_(x rarr0)(e^(x)-1-x)/(x^(2)) equals to

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

The value of lim_(x rarr0)(e^(x^(2))-1)/(x) is-

Evaluate: lim_(x rarr0)(e^(x^(2))-cos x)/(x^(2))

CENGAGE-LIMITS-Single Correct Answer Type
  1. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  2. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  3. lim(xrarr0) (log(x^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  4. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  5. The value of lim(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

    Text Solution

    |

  6. If f(n)=lim(xrarr0) ((1+sin.(x))/(2))(1+sin.(x)/(2^(2)))...(1+sin.(x)/...

    Text Solution

    |

  7. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  8. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  9. lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  10. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  11. If f(a)=(1)/(4), then lim(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)...

    Text Solution

    |

  12. lim(xrarr0^(+)) (1)/(xsqrtx)(a tan^(-1).(sqrtx)/(a)-btan^(-1).(sqrtx)/...

    Text Solution

    |

  13. The value of lim(xrarr0) ((1+2x)/(1+3x))^((1)/(x^(2))).e^((1)/(e^(x)))...

    Text Solution

    |

  14. If F:R rarr R be a differentiable function at x = 0 satisfying f(0)=0 ...

    Text Solution

    |

  15. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  16. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  17. Number of integral values of lambda for which lim(xrarr1) sec^(-1)((la...

    Text Solution

    |

  18. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  19. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |

  20. If lim(xrarroo) xlog(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)...

    Text Solution

    |