If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(2)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are
A
0
B
1
C
`-1`
D
2
Text Solution
Verified by Experts
The correct Answer is:
A, B
Let `f(x)={x^(3)}-{x}^(3)` `f(a)=0` `(a^(+))=a^(3)-a^(3)=0` `f(a^(-))=underset(hrarr0)(lim)([(a-h)^(3)]-[a-h]^(3))=a^(3)-1-(a-1)^(3)=3a(a-1)` Since `f(a^(-))=0 rArr 3a(a-1)=0 rArr a=0 or a=1`
Topper's Solved these Questions
LIMITS
CENGAGE|Exercise Comprehension Type|4 Videos
LIMITS
CENGAGE|Exercise Question Bank|30 Videos
LIMITS
CENGAGE|Exercise ComprehensionType|2 Videos
JEE 2019
CENGAGE|Exercise Chapter 10|9 Videos
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
The value of a for which lim_(x rarr-2)(3x^(2)+ax+a+3)/(x^(2)+x-2) exists.Also find the value of the limit.