Home
Class 12
MATHS
If a in I, then value of a for which lim...

If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(2)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A, B

Let `f(x)={x^(3)}-{x}^(3)`
`f(a)=0`
`(a^(+))=a^(3)-a^(3)=0`
`f(a^(-))=underset(hrarr0)(lim)([(a-h)^(3)]-[a-h]^(3))=a^(3)-1-(a-1)^(3)=3a(a-1)`
Since `f(a^(-))=0 rArr 3a(a-1)=0 rArr a=0 or a=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of a for which lim_(x rarr-2)(3x^(2)+ax+a+3)/(x^(2)+x-2) exists.Also find the value of the limit.

Evaluate lim_(xrarra){(x^(12)-a^(12))/(x-a)}.

Evaluate lim_(xrarra)((x^(m)-a^(m))/(x^(n)-a^(n))).

the value of lim_(x rarr0)(tan x-sin x)/(x^(3))

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

Evaluate: lim_(xrarra) (sqrt(x)-sqrt(a))/(x-a)

The value of [lim_(x rarr1)(tan^(2)(x-1))/(x^(3)-x^(2)-x+1)]

lim_ (x rarr0) (tan ^ (3) x-tan x ^ (3)) / (x ^ (5)) equals

The value of lim_(x rarr oo)(x+2)tan^(-1)(x+2)-(x tan^(-1)x) is

The value of lim_(x rarr0)(tan x-sin x)/(x^(3)) equals