Home
Class 12
MATHS
int((cosx)^(n-1))/((sinx)^(n+1))dx= ...

`int((cosx)^(n-1))/((sinx)^(n+1))dx=` (A) `-cot^n x/n+c` (B) `-cot^n x/(n+1)+c` (C) `cot^n x/n+c` (D) `cot^n x/(n+1)+c`

A

`(cot^(n)x)/(n)`

B

`(-cot^(n-1)x)/(n-1)`

C

`(-cot^(n)x)/(n)`

D

`(cot^(n-1)x)/(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
C

`int(cos^(n-1)x)/(sin^(n+1)x)dx=int cot^(n-1)x" cosec"^(2)xdx`
`=(-cot^(n)x)/(n)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int((cos x)^(n-1))/((sin x)^(n+1))dx=(A)-(cot^(n)x)/(n)+c(B)-(cot^(n)x)/(n+1)+c(C)(cot^(n)x)/(n)+c(D)(cot^(n)x)/(n+1)+c

int_(n in N)(a*x^(n-1))/(bx^(n)+c)dx where a,b,c are real nuber

If I=int (((sinx)^n-sinx^(1/n))/((sinx)^(n+1) cosx)) dx is eqaul to (a) (n/(n^2-1))(1-1/(sinx^(n-1)))^(1/n+1)+c (b) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n+1)+c (c) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n)+c (d) (n/(n^2-1))(1-1/(sinx))^(1/n+1)+c

f (n) = cot ^ (2) ((pi) / (n)) + cot ^ (2) backslash (2 pi) / (n) + ............ + cot ^ (2) backslash ((n-1) pi) / (n), (n> 1, n in N) then lim_ (n rarr oo) (f (n)) / (n ^ (2)) is equal to (A) (1) / (2) (B) (1) / (3) (C) (2) / (3) (D) 1, (n> 1, n in N)

If (d)/(dx)[ x^(n+1)+c]=(n+1)x^(n) , then find int x^(n)dx .

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

Find the sum of the series cot 2x. Cot 3x +cot 3x . Cot 4x+…..+cot (n+1)x cot (n+2)x