Home
Class 12
MATHS
If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-...

If `int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x))` where f(x) is of the form of `ax^(2)+bx+c`, then the value of f(1) is

A

4

B

5

C

6

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and find the function \( f(x) \) in the form \( ax^2 + bx + c \). Let's break down the solution step by step. ### Step 1: Set up the integral We start with the integral: \[ \int \frac{(2x + 3) \, dx}{x(x + 1)(x + 2)(x + 3) + 1} \] ### Step 2: Simplify the denominator First, we need to simplify the denominator: \[ x(x + 1)(x + 2)(x + 3) + 1 \] Expanding \( x(x + 1)(x + 2)(x + 3) \): \[ = x[(x^2 + 3x + 2)(x + 3)] = x[x^3 + 6x^2 + 11x + 6] \] Thus, \[ = x^4 + 6x^3 + 11x^2 + 6x + 1 \] ### Step 3: Change of variables We notice that the numerator \( 2x + 3 \) can be related to the derivative of \( x^2 + 3x \). Let's set: \[ t = x^2 + 3x \] Then, the derivative \( dt = (2x + 3) \, dx \). ### Step 4: Rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ \int \frac{dt}{t(t + 2) + 1} \] This simplifies to: \[ \int \frac{dt}{t^2 + 2t + 1} = \int \frac{dt}{(t + 1)^2} \] ### Step 5: Integrate The integral of \( \frac{1}{(t + 1)^2} \) is: \[ -\frac{1}{t + 1} + C \] ### Step 6: Substitute back for \( t \) Substituting back for \( t \): \[ -\frac{1}{x^2 + 3x + 1} + C \] ### Step 7: Identify \( f(x) \) From the problem statement, we have: \[ C - \frac{1}{f(x)} = -\frac{1}{x^2 + 3x + 1} + C \] This implies: \[ f(x) = x^2 + 3x + 1 \] ### Step 8: Calculate \( f(1) \) Now, we need to find \( f(1) \): \[ f(1) = 1^2 + 3(1) + 1 = 1 + 3 + 1 = 5 \] Thus, the value of \( f(1) \) is: \[ \boxed{5} \]

To solve the given problem, we need to evaluate the integral and find the function \( f(x) \) in the form \( ax^2 + bx + c \). Let's break down the solution step by step. ### Step 1: Set up the integral We start with the integral: \[ \int \frac{(2x + 3) \, dx}{x(x + 1)(x + 2)(x + 3) + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int((2x-8)/((x-1)(x-3)(x-5)(x-7)+16))dx=lambda-(1)/(f(x)) Where f(x) is of the form of ax^(2)+bx+c , then

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

If I=int(dx)/(root(3)(x^((5)/(2))(1+x)^((7)/(2))))=kf(x)+c , where c is the integration constant and f(1)=(1)/(2^((1)/(6))) , then the value of f(2) is

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int(x+1)/(x(1+xe^(x))^(2))dx=log|1-f(x)|+f(x)+c, then f(x)=

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1

CENGAGE-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  2. int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  3. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  4. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  5. int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  6. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  7. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  8. If sqrt(x+sqrt(x^(2)+x))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sqrt(...

    Text Solution

    |

  9. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  10. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  11. If int(3tan(x-(pi)/(4)))/(cos^(2)xsqrt(tan^(3))+xtan^(2)x+tanx)=Ktan^(...

    Text Solution

    |

  12. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  13. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  14. int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

    Text Solution

    |

  15. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  16. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  17. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  18. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  19. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  20. int(dx^(3))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |