Home
Class 12
MATHS
int(dx)/(x^(2)sqrt(16-x^(2))) has the va...

`int(dx)/(x^(2)sqrt(16-x^(2)))` has the value equal to

A

`C-(1)/(4)tan^(-1)sec((x)/(4))`

B

`(1)/(4)tan^(-1)sec((x)/(4))+C`

C

`C-(sqrt(16-x^(2)))/(16x)`

D

`(sqrt(16-x^(2)))/(16x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(1)/(x^(2)sqrt(16-x^(2)))dx`
Put `x=(1)/(t),`
`dx=-(1)/(t^(2))dt therefore I=int(-(1)/(t^(2))dt)/((1)/(t)xx(1)/(t^(2))sqrt(16t^(2)-1))=int(-tdt)/(sqrt(16t^(2)-1))`
Let `16t^(2)-1=u^(2), 32tdt = 2u du,`
`tdt=(u)/(16)du thereforeI=-(1)/(16)int(udu)/(u)=-(u)/(16)+C=-(sqrt(16-x^(2)))/(16x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sqrt(16-9x^(2)))

int(dx)/(sqrt(16-4x^(2)))=?

int(dx)/(sqrt(16-x^(2)))

int_(0)^(4)sqrt(16-x^(2))dx=

int(sqrt(16-x^(2)))dx

int(dx)/(sqrt(5x-6-x^(2))) equals

int(dx)/(sqrt(x-x^(2))) equal is :

int(dx)/(sqrt(3-5x-x^(2))) equals

int(dx)/(x^(2)sqrt(a^(2)x^(2)+1)) equals

int(dx)/(sqrt(x-x^(2))) is equal to