Home
Class 12
MATHS
int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xs...

`int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx` is

A

`2tan^(-1)(x+sqrt(1-x^(2)))+c`

B

`tan^(-1)(x+sqrt(1-x^(2)))+c`

C

`2tan^(-1)(x-sqrt(1-x^(2)))+c`

D

`2cot^(-1)(x+sqrt(1-x^(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx, \] we can use the substitution \( x = \sin \theta \). ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \). 2. **Transform the Integral**: - We know that \( \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta \). - Substitute these into the integral: \[ \int \frac{\cos \theta - \sin \theta}{\cos \theta (1 + \sin \theta \cos \theta)} \cos \theta \, d\theta. \] - This simplifies to: \[ \int \frac{\cos^2 \theta - \sin \theta \cos \theta}{\cos^2 \theta (1 + \sin \theta \cos \theta)} \, d\theta. \] 3. **Simplifying the Denominator**: - The denominator becomes: \[ 1 + \sin \theta \cos \theta = 1 + \frac{1}{2} \sin(2\theta). \] - To make it easier, multiply the numerator and denominator by 2: \[ \int \frac{2(\cos^2 \theta - \sin \theta \cos \theta)}{2\cos^2 \theta + \sin(2\theta)} \, d\theta. \] 4. **Rearranging**: - The integral can be rewritten as: \[ 2 \int \frac{\cos \theta - \sin \theta}{1 + \sin \theta + \cos \theta} \, d\theta. \] 5. **Substitution for Integration**: - Let \( t = \sin \theta + \cos \theta \). Then, \( dt = (\cos \theta - \sin \theta) \, d\theta \). - The integral now becomes: \[ 2 \int \frac{dt}{1 + t^2}. \] 6. **Integral of the Result**: - The integral of \( \frac{1}{1 + t^2} \) is \( \tan^{-1}(t) \): \[ 2 \tan^{-1}(t) + C. \] 7. **Back Substitution**: - Substitute back \( t = \sin \theta + \cos \theta \): \[ 2 \tan^{-1}(\sin \theta + \cos \theta) + C. \] - Since \( \sin \theta = x \) and \( \cos \theta = \sqrt{1 - x^2} \), we have: \[ 2 \tan^{-1}(x + \sqrt{1 - x^2}) + C. \] ### Final Answer: Thus, the value of the integral is: \[ \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx = 2 \tan^{-1}(x + \sqrt{1 - x^2}) + C. \]

To solve the integral \[ \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx, \] we can use the substitution \( x = \sin \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x+sqrt(1-x^(2)))/(x.sqrt(1-x^(2)))dx=

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

int xsqrt(1-x-x^(2)dx)

Evaluate the integral int_(-1)^(1)(x)/(sqrt(1-x^(2)))sin^(-1)(2xsqrt(1-x^(2)))dx .

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

int(dx)/((1+x)sqrt(1+x-x^(2)))dx