Home
Class 12
MATHS
int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3...

`int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=`

A

`(1)/(4)tan^(-1)((x^(3)+x^(2)+1)/(2))+c`

B

`(1)/(2)tan^(-1)((x^(3)+x^(2)+1)/(2))+c`

C

`sin^(-1)((x^(3)+x^(2)+1)/(2))+c`

D

`(1)/(2)tan^(-1)((x^(3)+x^(2))/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3x^2 + 2x}{x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5} \, dx, \] we can follow these steps: ### Step 1: Identify the Denominator and its Derivative We start by observing the denominator: \[ x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5. \] Notice that the derivative of the denominator resembles the numerator. We can differentiate the denominator to see if it matches the numerator: \[ \frac{d}{dx}(x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5) = 6x^5 + 10x^4 + 4x^3 + 6x^2 + 4x. \] ### Step 2: Simplify the Integral Now, we can rewrite the integral in a more manageable form. We can express the numerator in terms of the derivative of the denominator: \[ 3x^2 + 2x = \frac{d}{dx}(x^3 + x^2 + 1). \] ### Step 3: Use Substitution Let \[ t = x^3 + x^2 + 1. \] Then, the derivative \(dt\) is: \[ dt = (3x^2 + 2x) \, dx. \] This allows us to rewrite the integral as: \[ \int \frac{dt}{t^2 + 4}. \] ### Step 4: Recognize the Standard Integral Form The integral \[ \int \frac{dt}{t^2 + 4} \] is a standard integral that can be solved using the formula: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C. \] In our case, \(a^2 = 4\) so \(a = 2\): \[ \int \frac{dt}{t^2 + 4} = \frac{1}{2} \tan^{-1} \left( \frac{t}{2} \right) + C. \] ### Step 5: Substitute Back Now, we substitute back for \(t\): \[ \frac{1}{2} \tan^{-1} \left( \frac{x^3 + x^2 + 1}{2} \right) + C. \] ### Final Answer Thus, the final solution to the integral is: \[ \int \frac{3x^2 + 2x}{x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x^3 + x^2 + 1}{2} \right) + C. \]

To solve the integral \[ \int \frac{3x^2 + 2x}{x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(x^(6)+2x^(3)-3)dx=

int(x^(2)(x^(6)+x^(5)-1)dx)/((2x^(6)+3x^(5)+2)^(2))

int(x^(2)+x+5)/(3x+2)dx

int (x^(3) +5x^(2) -4)/(x^(2)) dx

int(3x^(2)-2x+4)tan(x^(3)-x^(2)+4x-2)dx

int(x^2)/(x^4+5x^2+6)dx=

Evaluate: (i) int(x^(5)+x^(-2)+2)/(x^(2))dx (ii) int(5x^(4)+12x^(3)+7x^(2))/(x^(2)+x)dx

int_(0)^(3)(2x^(2)+3x+5)dx

Evaluate: int((x^(2)+1)(x^(2)+4))/((x^(2)+3)(x^(2)-5))dx

" 5."int((x^(2)-2x+3)/(x^(4))))dx

CENGAGE-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. If int(3tan(x-(pi)/(4)))/(cos^(2)xsqrt(tan^(3))+xtan^(2)x+tanx)=Ktan^(...

    Text Solution

    |

  2. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  3. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  4. int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

    Text Solution

    |

  5. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  6. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  7. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  8. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  9. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  10. int(dx^(3))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |

  11. int((x+1)^(2)x)/(x(x^(2)+1)) is equal to

    Text Solution

    |

  12. int(x^3-x)/(1+x^6)dx is equal to

    Text Solution

    |

  13. int (x^3-1)/((x^4+1)(x+1)) dx is

    Text Solution

    |

  14. The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

    Text Solution

    |

  15. int(x^(3)-1)/(x^(3)+x) dx is equal to:

    Text Solution

    |

  16. int((2+secx)secx)/((1+2secx)^2)dx=

    Text Solution

    |

  17. If f(x)dx=g(x) and f^(-1)(x) is differentiable, then intf^(-1)(x)dx eq...

    Text Solution

    |

  18. int(e^(cotx))/(sin^(2)x)("2 ln cosec x"+sin2x)dx

    Text Solution

    |

  19. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  20. If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the val...

    Text Solution

    |