Home
Class 12
MATHS
int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equ...

`int(1)/((1+sqrtx)sqrt(x-x^(2)))dx` is equal to

A

`2(sqrt((x)/sqrt(1-x))-(1)/(sqrt(1-x)))+c`

B

`2(sqrt((x)/sqrt(1-x))-(1)/(1-x))+c`

C

`2(sqrt((x)/(1-x))-(1)/(sqrt(1-x)))+c`

D

`2(sqrt((x)/(1-x))-(1)/(1-x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(1+\sqrt{x})\sqrt{x-x^2}} \, dx \), we will perform a substitution and simplify the expression step by step. ### Step 1: Substitution Let \( \sqrt{x} = \sin(t) \). Then, we have: \[ x = \sin^2(t) \] Differentiating both sides gives: \[ dx = 2\sin(t)\cos(t) \, dt \] ### Step 2: Substitute in the Integral Now, we substitute \( \sqrt{x} \) and \( dx \) into the integral: \[ \sqrt{x - x^2} = \sqrt{\sin^2(t) - \sin^4(t)} = \sqrt{\sin^2(t)(1 - \sin^2(t))} = \sqrt{\sin^2(t) \cos^2(t)} = \sin(t) \cos(t) \] Thus, the integral becomes: \[ \int \frac{1}{(1+\sin(t)) \sin(t) \cos(t)} \cdot 2\sin(t)\cos(t) \, dt \] ### Step 3: Simplify the Integral The \( \sin(t) \cos(t) \) terms cancel out: \[ = \int \frac{2}{1+\sin(t)} \, dt \] ### Step 4: Further Simplification To simplify \( \frac{2}{1+\sin(t)} \), we multiply the numerator and denominator by \( 1 - \sin(t) \): \[ = \int \frac{2(1 - \sin(t))}{(1+\sin(t))(1-\sin(t))} \, dt = \int \frac{2(1 - \sin(t))}{1 - \sin^2(t)} \, dt = \int \frac{2(1 - \sin(t))}{\cos^2(t)} \, dt \] This can be separated into two integrals: \[ = 2\int \sec^2(t) \, dt - 2\int \frac{\sin(t)}{\cos^2(t)} \, dt \] ### Step 5: Integrate The integrals can be solved as follows: 1. \( \int \sec^2(t) \, dt = \tan(t) + C \) 2. \( \int \frac{\sin(t)}{\cos^2(t)} \, dt = -\frac{1}{\cos(t)} + C \) Thus, we have: \[ = 2\tan(t) + 2\sec(t) + C \] ### Step 6: Back Substitute Recall that: - \( \tan(t) = \frac{\sin(t)}{\cos(t)} = \frac{\sqrt{x}}{\sqrt{1-x}} \) - \( \sec(t) = \frac{1}{\cos(t)} = \frac{1}{\sqrt{1-x}} \) Putting these back into our expression gives: \[ = 2\left(\frac{\sqrt{x}}{\sqrt{1-x}}\right) + 2\left(\frac{1}{\sqrt{1-x}}\right) + C \] Combining these terms: \[ = \frac{2\sqrt{x} + 2}{\sqrt{1-x}} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{(1+\sqrt{x})\sqrt{x-x^2}} \, dx = \frac{2\sqrt{x} + 2}{\sqrt{1-x}} + C \]

To solve the integral \( \int \frac{1}{(1+\sqrt{x})\sqrt{x-x^2}} \, dx \), we will perform a substitution and simplify the expression step by step. ### Step 1: Substitution Let \( \sqrt{x} = \sin(t) \). Then, we have: \[ x = \sin^2(t) \] Differentiating both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

int(dx)/((1+sqrt(x))*sqrt(x-x^(2))) is equal to

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(1)/(sqrt(8+2x-x^(2)))dx is equal to

int (1)/(sqrtx+ sqrt(x^(3)))dx= ….

int(sqrtx)/(sqrt(a^(3)-x^(3)))dx equal to

The value of int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx is equal to

int(1)/(sqrtx+x)dx=

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to