Home
Class 12
MATHS
If f(x)dx=g(x) and f^(-1)(x) is differen...

If `f(x)dx=g(x) and f^(-1)(x)` is differentiable, then `intf^(-1)(x)dx` equal to

A

`g^(-1)(x)+C`

B

`xf^(-1)+C`

C

`xf^(-1)(x)-g(f^(-1)(x))+C`

D

`f^(-1)(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=intf^(-1)(x)dx=f^(-1)(x).x-intx.((f^(-1))(x))'dx`
Put `f^(-1)(x)=t`
`therefore" "I=f^(-1)(x).x-intf(t).dt`
`therefore" "I=f^(-1).x-g(t)+C`
`=x.f^(-1)(x)-g(f^(-1)(x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=g(x) then int f^(-1)(x)dx is

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If intf(x)dx=h(x) and intf(x)dx=g(x) as well, then

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

If f(x) and g(x) are differentiable function then show that f(x)+-g(x) are also differentiable such that d(f(x)+-g(x))/(dx)=d(f(x))/(dx)+-d(g(x))/(dx)

If f(x) and g(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that (d)/(dx){f(x)+-g(x)}=(d)/(dx){f(x)}+-(d)/(dx){g(x)}

If intf(x)dx=f(x)+c," then " f(x)=