Home
Class 12
MATHS
int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f...

`int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C`, then f(x) is equal to

A

`sinx`

B

`cos x`

C

`tanx`

D

`cotx`

Text Solution

Verified by Experts

The correct Answer is:
C

`int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=int((sec^(2)x)/(sin^(7)x)-(7)/(sin^(7)x))dx`
`=int(sec^(2)x)/(sin^(7)x)dx-int(7)/(sin^(7))=I_(1)+I_(2)`
`I_(2)=int(sec^(2)x)/(sin^(7)x)dx`
`=(tanx)/(sin^(7)x)+7int(tanxcosx)/(sin^(8)x)dx`
`=(tanx)/(sin^(7)x)-I_(2)`
`therefore" "I_(1)+I_(2)=(tanx)/(sin^(7)x)+C`
`rArr" "f(x)=tanx`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/(sin^(2)xcos^(2)x)dx=

int(1)/(sin^(2)x.cos^(2)x)dx=

Suppose int(1-7cos^(2)x)/(sin^(7)x cos^(2)x)dx=(g(x))/(sin^(7)x)+c where C is arbitrary constant of ^(7)x integration.then find value of g'(0)+g''((pi)/(4))

int(sec^(2)x-7)/(sin^(7)x)dx

int(sin^(2)6x-cos^(2)7x)dx=

int((7)/(cos^(2)x)-(3)/(sin^(2)x))dx

int(cos^7x)/(sinx)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

int(cos x)/(sin^(7)x)dx