Home
Class 12
MATHS
If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2...

If `f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0` then the value of f(1) is

A

`e((pi)/(4)-(1)/(2))+1`

B

`e((pi)/(4)+(1)/(2))+1`

C

`e((pi)/(2)-(1)/(4))+1`

D

`e^(-1)((pi)/(4)-(1)/(2))+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int e^x \left( \tan^{-1}(x) + \frac{2x}{(1+x^2)^2} \right) dx \] with the condition that \( f(0) = 0 \). We need to find the value of \( f(1) \). ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ f(x) = \int e^x \tan^{-1}(x) \, dx + \int e^x \frac{2x}{(1+x^2)^2} \, dx \] ### Step 2: Use Integration by Parts For the first integral, we can use integration by parts. Let: - \( u = \tan^{-1}(x) \) ⇒ \( du = \frac{1}{1+x^2} \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int e^x \tan^{-1}(x) \, dx = e^x \tan^{-1}(x) - \int e^x \frac{1}{1+x^2} \, dx \] ### Step 3: Evaluate the Second Integral Now we need to evaluate the second integral: \[ \int e^x \frac{2x}{(1+x^2)^2} \, dx \] Notice that \( \frac{2x}{(1+x^2)^2} \) is the derivative of \( -\frac{1}{1+x^2} \). Thus, we can rewrite the integral as: \[ \int e^x \frac{2x}{(1+x^2)^2} \, dx = -e^x \frac{1}{1+x^2} + C \] ### Step 4: Combine the Results Combining both parts, we have: \[ f(x) = e^x \tan^{-1}(x) - \int e^x \frac{1}{1+x^2} \, dx - e^x \frac{1}{1+x^2} + C \] ### Step 5: Determine the Constant \( C \) We know that \( f(0) = 0 \): \[ f(0) = e^0 \tan^{-1}(0) - e^0 \frac{1}{1+0^2} + C = 0 \] This simplifies to: \[ 0 = 0 - 1 + C \implies C = 1 \] ### Step 6: Final Expression for \( f(x) \) Thus, we have: \[ f(x) = e^x \tan^{-1}(x) - e^x \frac{1}{1+x^2} + 1 \] ### Step 7: Evaluate \( f(1) \) Now we can find \( f(1) \): \[ f(1) = e^1 \tan^{-1}(1) - e^1 \frac{1}{1+1^2} + 1 \] Calculating each term: - \( e^1 = e \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \frac{1}{1+1^2} = \frac{1}{2} \) Substituting these values: \[ f(1) = e \cdot \frac{\pi}{4} - e \cdot \frac{1}{2} + 1 \] ### Step 8: Simplify \[ f(1) = e \left( \frac{\pi}{4} - \frac{1}{2} \right) + 1 \] ### Final Answer Thus, the value of \( f(1) \) is: \[ f(1) = e \left( \frac{\pi}{4} - \frac{2}{4} \right) + 1 = e \left( \frac{\pi - 2}{4} \right) + 1 \]

To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int e^x \left( \tan^{-1}(x) + \frac{2x}{(1+x^2)^2} \right) dx \] with the condition that \( f(0) = 0 \). We need to find the value of \( f(1) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sex^(2)xdx and f(0)=0then f(1)=

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is

If a function fis such that f(x)=int_(0)^(x)(dx)/(f(x)) and f(1)=sqrt(2), then the value of f(2) is