Home
Class 12
MATHS
Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=t...

Prove that `tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{2x}{2-x^2}\right), \] we will use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right), \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Let: - \(a = x + 1\) - \(b = x - 1\) ### Step 2: Calculate \(a + b\) \[ a + b = (x + 1) + (x - 1) = 2x \] ### Step 3: Calculate \(ab\) \[ ab = (x + 1)(x - 1) = x^2 - 1 \] ### Step 4: Check the condition for the identity We need to ensure that \(ab < 1\): \[ x^2 - 1 < 1 \implies x^2 < 2 \implies |x| < \sqrt{2} \] This condition will be satisfied for \(x\) values within the interval \((- \sqrt{2}, \sqrt{2})\). ### Step 5: Apply the identity Using the identity: \[ \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) = \tan^{-1}\left(\frac{2x}{1 - (x^2 - 1)}\right) \] ### Step 6: Simplify the denominator \[ 1 - (x^2 - 1) = 1 - x^2 + 1 = 2 - x^2 \] ### Step 7: Substitute back into the equation Thus, we have: \[ \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1}\left(\frac{2x}{2 - x^2}\right) \] ### Conclusion This shows that: \[ \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1}\left(\frac{2x}{2 - x^2}\right) \] Hence, we have proved the required equation. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - E)(ASSERTION-REASON TYPE QUESTIONS)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)((2)/(3))

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)((1)/(a^(2)-x+1))

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that 3tan^(-1)x=tan^(-1)((3x-x^3)/(1-3x^2))

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

Prove that tan^(-1)(cot x)+cot^(-1)(tan x)=pi-2x

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)