Home
Class 12
MATHS
x(dy)/(dx)=y-xcos^(2)(y/x)...

`x(dy)/(dx)=y-xcos^(2)(y/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \( x \frac{dy}{dx} = y - x \cos^2\left(\frac{y}{x}\right) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ x \frac{dy}{dx} = y - x \cos^2\left(\frac{y}{x}\right) \] We can divide both sides by \( x \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y}{x} - \cos^2\left(\frac{y}{x}\right) \] ### Step 2: Identify the homogeneous function The function on the right side can be expressed in terms of \( \frac{y}{x} \). Let \( v = \frac{y}{x} \). Then, we can rewrite the equation as: \[ \frac{dy}{dx} = v - \cos^2(v) \] ### Step 3: Differentiate \( y \) in terms of \( v \) Since \( y = vx \), we differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Now, substituting this back into our equation gives: \[ v + x \frac{dv}{dx} = v - \cos^2(v) \] ### Step 4: Simplify the equation We can cancel \( v \) from both sides: \[ x \frac{dv}{dx} = -\cos^2(v) \] ### Step 5: Separate variables Now we can separate the variables: \[ \frac{dv}{\cos^2(v)} = -\frac{dx}{x} \] ### Step 6: Integrate both sides Integrating both sides gives: \[ \int \sec^2(v) dv = -\int \frac{dx}{x} \] The integral of \( \sec^2(v) \) is \( \tan(v) \), and the integral of \( -\frac{1}{x} \) is \( -\log|x| \): \[ \tan(v) = -\log|x| + C \] ### Step 7: Substitute back for \( v \) Recall that \( v = \frac{y}{x} \), so we substitute back: \[ \tan\left(\frac{y}{x}\right) = -\log|x| + C \] ### Final Solution Thus, the solution to the differential equation is: \[ \tan\left(\frac{y}{x}\right) + \log|x| = C \]
Promotional Banner

Topper's Solved these Questions

  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • FUNDAMENTAL CONCEPTS OF 3-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise Exercise|18 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos

Similar Questions

Explore conceptually related problems

The solution of differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx)) = x(cos^(2)(x^(2)+y^(2))/(y^(3))) is

Solution of differential equation y-x(dy)/(dx)=y^(2)+(dy)/(dx), when x=1,y=2, is

x(dy)/(dx)-y=2x^(2)y

(xcos(y/x))(dy)/(dx)=(ycos(y/x))+x

sin x(dy)/(dx)+y=y^(2)

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

Solution of the differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx))=(x sin^(2)(x^(2)+y^(2)))/(y^(3))

x(dy)/(dx)+(y^(2))/(x)=y

y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))is

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))