Home
Class 12
MATHS
Show that |{:(x,y,z),(2x+2a,2y+2b,2z+2c)...

Show that `|{:(x,y,z),(2x+2a,2y+2b,2z+2c),(a,b,c):}|=0`

Text Solution

Verified by Experts

`"Given"|{:(x,y,z),(2x,2y,2z),(a,b,c):}|+|{:(x,y,z),(2a,2b,2c),(a,b,c):}|
`0+0=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Show that |(0,x,y,z),(-x,0,c,b),(-y,-c,0,a),(-z,-b,-a,0)|=(ax-by+cz)^2

If x+y+z=,0, show that x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]|=0

Show that |a b c a+2x b+2y c+2z x y z|=0

By using properties of determinants. Show that: (i) |a-b-c2a2a2bb-c-a2b2c2cc-a-b|=(a+b+c)^3 (ii) |x+y+2z x y z y+z+2x y z x z+x+2y|=2(x+y+z)^3

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

If (2y + 2z - x)/a = (2z + 2x - y)/b = (2x + 2y - z)/c ,then show that (9x)/(2b + 2c - a) = (9y)/(2c + 2a - b) = (9z)/(2a + 2b - c)

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

If x=asecthetacosphi , y=secthetasinphiandz=ctantheta ,show that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1 .