Home
Class 12
MATHS
Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^...

Let `"f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}|`
Then value or `d^n/(dx^n)["f(x)"]"at "x=1" is "`

A

0

B

1

C

-1

D

`1/sqrt2`

Text Solution

Verified by Experts

Know that,
`d^n/(dx^n)[pi^n/x]=((-1)^(n)!pi^n)/x^(n+1)`
`d^n/(dx^n)[sinpix]=pi^nsin(pix(npi)/2)" and "d^n/(dx^n)[cospix]=pi^nsin(pix+(npi)/2)`
Thus, `f^n(x)=|{:(((-1)^n n!pi^n)/(X^(n+1)),pi^nsin(pix+(npi)/(2)),pi^ncos(pix+(npi)/(2))),((-1)^n n!,-sin((npi)/(2)),-cos((npi)/(2))),(-1,(1)/(sqrt(2)),(sqrt(3))/(2)):}|`
`rArr" "f^n(x)=|{:((-1)^n n!pi^n,pi^nsin(pix+(npi)/(2)),pi^ncos(pix+(npi)/(2))),((-1)^n n!,-sin((npi)/(2)),-cos((npi)/(2))),(-1,(1)/(sqrt(2)),(sqrt(3))/(2)):}|`
`=0{ :.R_1" and " R_2 " are propartional"}`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If A(x)=det[[x^(n),sin x,cos xn!sin((n pi)/(2)),cos((n pi)/(2))a,a^(2),a^(3)]], then the value of (d^(n))/(dx^(n))[Delta(x)] at x=0 is

if =|{:(x^(n),,n!,,2),(cos x,,"cos"(npi)/(2),,4),(sin x,,"sin" (npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) (n in z)

If f(x)=det[[x^(n),n!,2cos x,cos((n pi)/(2)),4sin x,sin((n pi)/(2)),8]], then find the value of (d^(n))/(dx^(n))[f(x)]_(x=0)]|

The value of sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11} , is

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

(x^(2)-2x(cos pi)/(n)+1)(x^(2)-2x(cos(2 pi))/(n)+1)(x^(2)-2(cos(n-1))/(n)pi+1) equal to