Home
Class 12
MATHS
If a, b, c are all different, solve the ...

If a, b, c are all different, solve the system of equations `x+y+z=1` `ax+by+cz=lamda` `a^2x+b^2y+c^2z=lamda^2` using Cramer's rule.

Text Solution

Verified by Experts

The system can be put in the matrix form
`[{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}][{:(x),(y),(x):}]=[{:(1),(lamda),(lamda^2):}]`
i.e., AX = B
where `A=[{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}]`
The determinant of the coeffient matrix,
`Delta=[{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}]=(a-b)(b-c)(c-a)ne0`
Hence the system possesses a unique solution given by
`x/Delta_1=y/Delta_2=z/Delta_2=1/Delta`
`Delta_i` being obtained from `Delta` by replacing `i^(th)` column of `Delta` by the elements of column matrix `[{:(1),(lamda),(lamda^2):}]`,
i.e., `x/|{:(1,1,1),(lamda,b,c),(lamda^2,b^2,c^2):}|=y/|{:(1,1,1),(a,lamda,c),(a^2,lamda^2,c^2):}|=z/|{:(1,1,1),(a,b,lamda),(a^2,b^2,lamda^2):}|=1/|{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}|`
`x=|{:(1,1,1),(lamda,b,c),(lamda^2,b^2,c^2):}|/|{:(1,1,1),(lamda,b,c),(a^2,b^2,c^2):}|=((lamda-b)(b-c)(c-lamda))/((a-b)(b-c)(c-a))=((lamda-c)(c-lamda))/((a-b)(c-a))`
Similarly `((a-lamda)(lamda-c))/((a-b)(b-c))" and z"=((b-lamda)(lamda-a))/((b-c)(c-a))`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations by cramer's rule: x+y+z=1 , x+2y+z=2 , x+y+2z=0

Consider the system of equations x+y+z=5 x+2y+lamda^2z=9 x+3y+lamdaz=mu

The system of equations -2x+y+z=a x-2y+z=b x+y-2z=c has

Solve the system of equations by cramer's rule: x+y+z=3 , 2x-y+3z=4 and x+2y-z=2

Solve the system of equations by cramer's rule: 2x-3y+z=-1 ,3x+y-2z=1 and 4x-y+z=9

Solve the system of equations by cramer's rule: 3x+3y-4z=2 , 5x-y=4 and 8x+2y-3z=7

Solve the system of equations by cramer's rule: 5x-y=9 , 3x+y=7 and x+y+z=4

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

Solve the system of equations by cramer's rule: x+2y-z=3 , 3x-4y+5z=7 and 7x-y+z=14