Home
Class 12
MATHS
eliminating a, b, c from x=a/(b-c), y=b/...

eliminating a, b, c from `x=a/(b-c), y=b/(c-a) z=c/(a-b)` we get

A

`|{:(1,-x,x),(1,-y,y),(1,-z,z):}|=0`

B

`|{:(1,-x,x),(1,y,-y),(1,z,z):}|=0`

C

`|{:(1,-x,x),(y,1,-y),(-z,z,z):}|=0`

D

`|{:(1,-x,x),(y,1,-y),(z,z,z):}|=0`

Text Solution

Verified by Experts

`x=a/(b-c)rArr-a+bx-cx=0`
`y=b/(c-a)rArr-ay-b+cy=0`
`z=c/(a-b)rArraz-bz-c=0`
On eliminating a, b, c, we get
`|{:(-1,x,-x),(-y,-1,y),(z,-z,-1):}|=0`
`rArr" "(-1)^3|{:(1,-x,x),(y,1,-y),(-z,z,1):}|=0`
`rArr" "|{:(1,-x,x),(y,1,-y),(-z,z,1):}|=0`
Hence option(2) is correct.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to

If 2b = a + c and y^(2) = xz , then what is x^(b-c) y^(c-a)z^(a-b) equal to ?

If a,b,c are in A.P.and x,y,z in G.P.prove that x^(b-c)*y^(c-a)*z^(a-b)=1

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If a, b, c are in A.P. and x, y, z are in G.P., then prove that : x^(b-c).y^(c-a).z^(a-b)=1