Home
Class 12
MATHS
Find (i) underset(x to 5)(lim 6) (ii) ...

Find (i) `underset(x to 5)(lim 6)`
(ii) `underset(x to 2)(lim x)`
(iii)` underset(x to 3)(lim [x + 2])`
(iv) `underset(x to 2)(lim 4x + 2])`

Text Solution

Verified by Experts

(i) `underset(x to 5)(lim) 6 = 6` `[:' underset(x to 3)(lim) C = C` where C is any real number `]`
(ii) `underset(x to 2)(lim) x = 2` `[:' underset(x to a)(lim) x = a]`
(iii) `underset(x to 3)(lim) [x + 2] - underset(x to 3)(lim) x + underset(x to 3)(lim) 2` `[:' underset(x to oo)(lim) (f(x) + g(x)) = underset(x to a)(lim) f (x) + underset(x to a)(lim) g (x)] = 3 + 2 = 5`
(iv) `underset(x to 2) [4x + 2] = underset(x to 2)(lim) 4x + underset(x to 2)(lim)2` `[:' underset(x to oo)(lim) [f(x) + g(x)] = underset(x to a)(lim) f(x) + underset(x to a)(lim) g(x)]`
`= 4 underset(x to 2)(lim) x + underset(x to 2)(lim) 2` `[:' underset(x to a)(lim) lambda f(x) = lambda underset(x to a)(lim) f(x), "where" lambda "is constant"]`
`= 4 (2) + 2 [:' underset(x to a) x = a]`
= 10
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Try yourself|64 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Find underset(x to oo)lim (1+1/x^2)^x

underset(x to 0)(lim) (1-cos x)/(x) is :

Evaluate underset(x to oo) lim ([x])/(2x)

underset(x to 0)lim x log sin x is equal to

Evaluate the following using :L ' Hospital 's rule . (i) if f(x) be a twice differentiable function and f'' (0) =2 , then find underset(x to 0) lim (2f(x)-3f(3x)+f(4x))/x^(2) (ii) if f(a) =2, f' (a) = 1, g (a) =2 , then find underset(x to 0) (g(x)f(a) -g(a)f(x0))/(x-a) (iii) underset( x to 0) (1/x - 1 /(sin x) ) (iv) lim(x to 0+) x In x (v) underset(x to 0) | cot x|^( sin x) (vi) underset(x to 0) (tan x + 4 tan 2x -3 tan 3x)/(x^(2) tan x)

underset(x to oo)lim (cos""2/x)^(x^2)=

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Example
  1. For the function f(x) = 2. Find lim(x to 1) f(x)

    Text Solution

    |

  2. Find lim(x to 0) f(x), where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,...

    Text Solution

    |

  3. Find (i) underset(x to 5)(lim 6) (ii) underset(x to 2)(lim x) (iii...

    Text Solution

    |

  4. Evaluate lim(x to 2) [4x^(2) + 3x + 9]

    Text Solution

    |

  5. Evaluate lim(x to 3)(x^(2) - 9)/(x + 2)

    Text Solution

    |

  6. Evaluate lim(x to p) (sqrt(1 + x) + sqrt(1 - x))/(1 - x)

    Text Solution

    |

  7. Evaluate lim(x to 4) (x^(2) - 7x + 12)/(x^(2) - 16)

    Text Solution

    |

  8. Evaluate, lim(x to 2) (x^(3) - 8)/(x^(2) - 4)

    Text Solution

    |

  9. Evalutate lim(x to 4)((x^(2) - x - 12)^(18))/((x^(3) - 8x^(2) + 16x)^(...

    Text Solution

    |

  10. Evaluate underset(x to 1) (X - 1)/(2x^(2 - 7x + 5)

    Text Solution

    |

  11. Evaluate lim(x to 1) ((1)/(x^(2) + x - 2) - (x)/(x^(3) - 1))

    Text Solution

    |

  12. Evaluate lim(x to sqrt(2)) (x^(9) - 3x^(8) + x^(6) - 9x^(4) - 4x^(2) ...

    Text Solution

    |

  13. Evaluate : underset(X to 2) (x^(8) - 256)/(x - 2)

    Text Solution

    |

  14. Evaluate lim(x to 3) (x^(7) - 2187)/(x - 81)

    Text Solution

    |

  15. Evaluate lim(x to a) ((x + 3)^(7//5) - (a + 3)^(7//5))/(x - a)

    Text Solution

    |

  16. If lim(x to 3) (x^(n) - 3^(n))/(x - 3) = 1458 and n in N, find n.

    Text Solution

    |

  17. If lim(x to a) (x^(7) + a^(7))/(x + a) = 7, find the value of a.

    Text Solution

    |

  18. If lim(x to 1) (x^(3) - 1)/(x - 1) = lim(x to k) (x^(4) - k^(4))/(x^...

    Text Solution

    |

  19. Evaluate lim(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

    Text Solution

    |

  20. Evaluate lim(x to 0) ("sin" 4x)/(6x)

    Text Solution

    |