Home
Class 12
MATHS
Evaluate lim(x to 2) (3^(x)+3^(x-1)-12)...

Evaluate `lim_(x to 2) (3^(x)+3^(x-1)-12)/(3^((-x)/(2))-3^(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{3^x + 3^{x-1} - 12}{3^{-\frac{x}{2}} - 3^{1-x}}, \] we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we substitute \( x = 2 \) into the expression: \[ 3^2 + 3^{2-1} - 12 = 9 + 3 - 12 = 0, \] and \[ 3^{-\frac{2}{2}} - 3^{1-2} = 3^{-1} - 3^{-1} = \frac{1}{3} - \frac{1}{3} = 0. \] Since both the numerator and denominator approach 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. ### Step 3: Differentiate the Numerator and Denominator **Numerator:** \[ f(x) = 3^x + 3^{x-1} - 12. \] Differentiating \( f(x) \): \[ f'(x) = 3^x \ln(3) + 3^{x-1} \ln(3). \] **Denominator:** \[ g(x) = 3^{-\frac{x}{2}} - 3^{1-x}. \] Differentiating \( g(x) \): \[ g'(x) = -\frac{1}{2} 3^{-\frac{x}{2}} \ln(3) + 3^{1-x} \ln(3). \] ### Step 4: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 2} \frac{f'(x)}{g'(x)} = \lim_{x \to 2} \frac{3^x \ln(3) + 3^{x-1} \ln(3)}{-\frac{1}{2} 3^{-\frac{x}{2}} \ln(3) + 3^{1-x} \ln(3)}. \] ### Step 5: Substitute \( x = 2 \) Again Substituting \( x = 2 \): **Numerator:** \[ f'(2) = 3^2 \ln(3) + 3^{2-1} \ln(3) = 9 \ln(3) + 3 \ln(3) = 12 \ln(3). \] **Denominator:** \[ g'(2) = -\frac{1}{2} 3^{-1} \ln(3) + 3^{1-2} \ln(3) = -\frac{1}{2} \cdot \frac{1}{3} \ln(3) + \frac{1}{3} \ln(3) = -\frac{1}{6} \ln(3) + \frac{1}{3} \ln(3). \] Simplifying the denominator: \[ g'(2) = \frac{1}{3} \ln(3) - \frac{1}{6} \ln(3) = \frac{2}{6} \ln(3) - \frac{1}{6} \ln(3) = \frac{1}{6} \ln(3). \] ### Step 6: Final Limit Calculation Now we have: \[ \lim_{x \to 2} \frac{12 \ln(3)}{\frac{1}{6} \ln(3)} = 12 \cdot 6 = 72. \] Thus, the value of the limit is \[ \boxed{72}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|125 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 1) (x^3-1)/(x^2-1)

Evaluate : lim_(x to 3)[x(x+1)] .

Evaluate the following limits : lim_(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)) .

The value of lim_(x rarr2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^((x)/(2))) is

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(x to 0) ((x+4)/(2-x))^((x^(2)+2x-3)/(x-1))

Evaluate lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).

Evaluate the following limits: lim_(xrarr2)((3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)))

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

Evaluate: lim_(xrarroo) (5x^(2)+3x+1)/(3x^(2)+2x+4)